Anshula Gandhi Roth’s Theorem on Arithmetic Progressions

We are going to prove Roth’s theorem on arithmetic progressions, which is usually proved using
Fourier analysis. However, the following proof (from Newman’s Analytic Number Theory) proves
the same theorem using complex analysis and Cauchy’s integral formula.

The Theorem

The central question:

How ‘big’ does a set of positive integers have to be before it is guaranteed to
have an arithmetic progression?

First, some questions you might find silly. Is it sufficient for us to say...

Question 1. ...any set of integers that contains more than N elements has a 3-term arithmetic
progression, for some N ?
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Question 2. ...any set of integers that surpasses a certain Lebesgue measure has a 3-term
arithmetic progression?
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If not, then what’s a useful way of distinguishing between sets of natural numbers? It turns out
a nice way to classify the ‘bigness’ of a set of integers A is using the following definition, that is,
‘natural density’:

ANA{L2,...
Density of A = lim sup | {1,2,..., i
n—+00 n
Roughly, this is the probability of encountering an item in the set A within the set of all integers.
To get used to this definition...

Question 3. What is the 'natural density’ of any finite set?
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Question 4. What is the 'natural density’ of the set of odd numbers?
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Question 5. What is the 'natural density’ of the set of prime numbers?
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It turns out this is a definition that is perfect for our purposes. That is:

Theorem (Roth)
If a set of integers has positive ‘natural density,” it must have a 3-term arithmetic progression.

We will spend the rest of this talk proving the contrapositive:

Theorem (Roth)
If a set of integers has no 3-term arithmetic progression, its ‘natural density’ is 0.

The Proof

So, to prove this theorem, we first want to consider the (not necessarily unique) set

S(n) := the biggest possible subset of {1...n} that has no 3-term arithmetic progressions.

Question 6. What is |S(3)]?
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Question 7. What is |S(5)|?
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Then, to prove the theorem, it suffices to show:

=0.

S
Density of S = lim sup |5(n)l
n—o0 n

That is, if we can show that the density of these maximally-sized AP-free sets is 0, then surely the
density of any AP-free set is 0.

Question 8. What is the relationship between |S(a+b)| and |S(a)| + |S(b)|? Is it =, <,or >?

“UONAPPAIU0D D S50 yYorym ‘|(q) | 40 |(v)g| Jo 2215 ay1 spaadxa
$125 252Y1 Jo 2u0 15D2] 1y (U01ssa1304d d1uyrap ou yim {q ‘- ‘1} Jo 1a5qns v 123 01 JUWI]|2
YoD2 WOL[ D 1ODAIGNS UDD d2M UIY] pup) UOISS2LE04d dyuUYILID OU Yiim {q + 0 ‘T + v} Jo
128qns v pun uoissaisoad dnauyirn ou ynum {v ‘- 1} fo jasqns v ol (q + )G uonvd 0}
219 2q pmoys am uvaus ppom iyl “|(q)S| + |(v)S| papaaixa |(q -+ v)g| 2218 ayg fi 10y Suronou
£q s1y1 225 und ap| 2amippogns s1 |(u)g| sty *|(Q)s| + [(v)s| > (@ + »)g| "8 IdMsUY

So, |S(n)| is subadditive. It turns out because the sizes of these sets are subadditive, the limit
above actually exists. So rather, all we have to show is:

Density of S = lim |S(n)l

n—oo n

=0

And indeed, experimentally, this seems to be true, these sets seem to be getting less dense as n
gets bigger:

n [5G [ Sl
1 1 1

2 2 1

4 3 .75
5 4 .80
9 5 ~ .56
11 6 ~ .55
13 7 ~ .b4
14 8 ~ .57
20 9 ~ .45
24 10 ~ 42

But, now we have to prove it.

S(n) behaves like a random set

A key fact in proving it will involve figuring out how ‘randomly’ these extremal sets S(n) behave.
So...
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Question 9. For any particular n, do you think the extremal set S(n) has roughly the same
number of even and odd elements?
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As it turns out, S(n) behaves like a random set in the sense it has roughly the same number of
odd and even elements, and also in a stronger sense.
S(n) behaves randomly in the sense that its generating function is asymptotically close to the

generating function of a random set with the same density (where density is D = lim w;—")l).

n—oo

Z 2*=D Z 2F +o(n) uniformly on |z| = 1

aeS(n) k<n

We will prove this by showing that the following polynomial (the difference between the
generating function of our extremal set and that of a random set) is small:

Z 2% Dsz:

aeS(n) k<n

q(2)| < 22en.
We know we can bound any n-degree polynomial near a certain point z depending on how it
behaves at a nearby point ¢, and how far away it is from that . For a derivation of this, see appendix

lemma

() < 1¢ =21 D 1O + (O]

m<n

So now we specialize our polynomial as ¢, and the point we know its behavior at as a root of
unity w. Now, in order to bound |¢(z)|, we have to bound all the things on the right-hand side here:

la()| < o =21 D lam(@)] + la(w)|

m<n

It turns out if we choose a new function /' and parameter /N carefullyﬂ the partial sums of our
function are pretty tightly bounded at particular roots of unity w. For details, see appendix [A.3]

|gm (w)| < QaF(E) + F(n) Vwst w*=1,a <N
«

"What is N and F'? So first, remember we have let € > 0 be arbitrary. Then we pick a parameter N based on this e.
In particular, let F'(z) = 1%1<ax(|S (t)] — Dt), and since ( ) gets arbitrarily small as x goes to infinity, we can always

pick an ng such that x > ng implies F(m) < e. Then, we pick N = [no]
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Question 10. Suppose that the choice of € necessitates choosing N = 3. For which roots of
unity w does the above bound on |q,,(w)| apply?
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So now we have a bound for ¢(z) at roots of unity, but want a bound across the entire unit circle.
So we need to bound |w — z|: what’s the smallest amount we can stray from each root of unity and
still cover the unit circle? Note that the bound on |g,,(w)| gets worse as « gets bigger, so ideally we
want our bound on |w — z| to get smaller as « gets bigger. But just as a first step...

Question 11. Are all z in the unit circle within %” from an N root of unity?

In other words, fix any z in the unit circle. Is there always an N root of unity w (i.e.
w™ = 1) such that z satisfies:
2

_ < ZC
=z <=
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But notice that even for small values of /N, it seems like this bound is unnecessarily loose. Can
we make this bound any tighter?

Question 12. How can we use Dirichlet’s approximation theorem to figure out the smallest

amount we can get away from each of those roots of unity (in terms of o and N ) and still cover
the whole circle?

@xgpuaddn u1 a4v S|P % S |z — o] mo suang 31 g1 I9MSUY

So, it turns out we can travel not too far from each of these particular roots of unity, and still
reach all z on the unit circle. We can choose:

2

< =
w=2ls TR
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Plugging those in to the equation above, we can eventually simplify down.

g < o =21 D lam(@)] + la(w)|

m<n

n|2aF(2) + F(n)] + [2aF (%) + F(n)|
« (6%

< |
~la(N+1)
.. lots of calculations which are in the appendix lemma[A.4]. ..
< 22en

So we have that |g(z)| < 22en for arbitrary € > 0, so |¢(2)| = o(n) as desired. So, the difference
between the generating function of our extremal set and a random set is actually quite small.

The number of arithmetic progressions of random sets grows quickly with
density

So, now if we can show that dense and random sets have lots of arithmetic progressions, and since
our set is random and has no arithmetic progressions, it must not be so dense.

The first thing we do is to find a generating function for our set that somehow tells us the number
of arithmetic progressions in the set.

Question 13. What is a generating function f(z) of a set S that has
A := the number of arithmetic progressions in S

as its constant term?

For example, if our set S = {1, 2,3} then the constant term of the generating function should
be 5, because the arithmetic progressions are (1,1,1),(2,2,2),(3,3,3),(1,2,3), (3,2, 1). Note
that we count trivial progressions and order.

Hint: Arithmetic progressions (a, b, ¢) satisfy a + ¢ = 2b.
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Now, we want to explicitly find what this constant term of this function f(z) is, without
multiplying out the terms. We know we can do this with the Cauchy integral formula for the Laurent
series, which tells us for any Laurent series f(z) about a point ¢, the constant term a is given by:
1 z

1 .

ag = —
27 J|o—gjmr2 (2 =€)
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So we can use this to find the number of arithmetic progressions A:

Z 24 Z ~a Z Z—Qa
A= L aeS(n) aeS(n) aeS(n)

21 J =1 z

dz

But remember, this generating function is approximately equal to the generating function for a
random set when |z| = 1, so, it turns out:

Question 14. Without actually calculating the integral or multiplying out the sum, what does
the following evaluate to?

Z ~a Z 24 Z Z—2a
L k<n k<n k<n e

270 J|2j=1 z
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Given the answer above, we can now simplify to:

3

A= %n2 + o(n?)

Roughly, the above equation tells us that the number of arithmetic progressions A grows quickly
with density.

Conclusion: S(n) can’t be dense

Since S(n) has no non-trivial arithmetic progressions, it only has trivial arithmetic progressions, of
which there are at most |S(n)|. So A < |S(n)| < n. So

3

7712 +o(n?) <n

So D = 0. That is, extremal sets S(n) with no arithmetic progressions have zero density. And
so all sets with no arithmetic progressions have zero density.
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A Appendix: Lemmas

Lemma A.1. For any fixed n, S(n) has roughly the same number of even and odd elements.

Proof: Suppose that S(n) has i even elements and j odd elements.

We could write its even elements like

2a,...,2ai .
{24 . }

And so then since scaling sets with no APs preserves the fact that it has no AP, the
following is an i-element subset of {1, 5 } with no AP.

{al,..., a; }

n
<3

So, we conclude i < |S(2)|. Since |S(2)| = 5|S(n)|, we have i T £|S(n)|.

We do the same thing with odd elements to find j < £|S(n)|.

So, both even and odd elements take up not much more than half the set.
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Lemma A.2. We can bound any polynomial near a certain point z depending on how it behaves at
a nearby point ¢, and how far away it is from that ¢ (naturally, the farther it is from that  point we
know about, the less restricted the bound is):

p() <1 =21 Ipm(Q)] + (<)

m<n

Proof:

Warning: This proof first involves polynomial long division (a series of tedious factoring,
multiplying, and substitutions) and finally a taking of absolute values to get the bound.

First, we know we can write any polynomial like:
z) = Z apz®
k=0
Then we let ¢ be some complex constant, and both multiply and divide by it:

p(z) = iak (%)ka

k=0

Then we do a change of variables, letting w = %
z) = Z apwtCk
k=0
Note this is just a new polynomial in terms of the new variable w. Let’s call it Q(w).

n
= E bkwk
k=0

Subtract Q(1) from both sides:

k=0
= Z bkwk — Z bk
k=0 k=0
= Z bk(wk — 1)
k=0
= Z bk(wk — 1)
k=1
= bplw— 1)W1
k=1
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Then dividing both sides by w — 1:

wngk(m—w...ﬂ)

Multiplying both sides by —1:

o0 _§ (S qu)

Moving a term over to the right side:
QW) _x~_i( Q)
— = ’ b — Q(1 —_—
e

n—1 . % n—1 . Q(l)
:Zw ;bk_z;wQ(l)+m

1=0 = 1=
n—1 Z % 1 n—1 Z
:;w ;karQ(l) <—1_W_i w)
< ! 1 1—w"
:;oﬂ;bk—l—Q(l)(l_w— 1_w)
n—1 7
-5 (o) e 2
1=0 k=0

10
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Anshula Gandhi

To change all the variables back, we notice that

=p(2)

Qw) = Zn: brw® = i apwhck
k=0 k=0

by = i arCr = pi(Q)

k=0

Msk

k=0
n

Q(l):ébk: > axCr = p(Q)

Putting these together:

pz) _ > pi(0) (g) + % (g)n

_Zz
1 ¢ <n

And when you take absolute values of both sides and apply triangle inequality

< om0 (2) |+ |25 ()

Z

z
¢

z
¢

Multiplying both sides by ‘1 =zl

>0 (3) |+

(2) ]

Multiplying both sides by |(| = 1:

>0 (3) |+

p(2) < ¢ = 2]

Applying triangle inequality again, we end up with the desired bound

p(2)] < 1¢— 21> Ipi()] + [p(Q)]

<n

11



Anshula Gandhi Roth’s Theorem on Arithmetic Progressions

Lemma A.3. The partial sums of q are bounded near roots of unity w:
4n(@)| < 20F(2) + F(n)

Here, F' = r£1<ax(|5 (t)| — Dt) and « has already been determined by the Dirichlet estimate
(recall also that w*=1landa < N ).

Proof:
We know by definition:
Y e pY
a€eS(n) k<n
So also by definition:
- T wony
aeS(n k<m
a<m

Now we can perform a slightly modified version of Euclidean division, dividing both a
and k by «.

* We write a = aq, + 1,

o We write k = aqi + 1
This is ‘modified’ division because we will do it such that the remainder r € {1, ... a}
rather than v € {0,...,a — 1}. We can do this because both a > 0 and k > 0 (if

not, there would be no way to represent them as a sum of something and some strictly
positive remainder).

So:
E waqa+7'a o D E waqk+rk
aeS(n) k<m
a<m

Now, we can notice that we can sum over all possible values of the remainder =

{1,...,a}, but only count the sum when the remainder r is the correct .
-3 5 w03 e
B=1 acS(n B=1 k<m
a<m rp=0
Tafﬁ
-3 ¥ 0T
B=1 a€S(n B=1 k<m
a<m k=pmoda
a=Bmoda

12
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Since w* = 1, this simplifies down to:

INEES S DL Sl SR
B=1 a€S(n) B=1  k<m

a<m k=Bmoda
a=fmoda

Q

=> | Y 1-D Y 1

ps=1 aeS(n) k<m
a<m k=pmoda
a=fBmoda

By adding and subtracting the same thing, we get a slightly different form:

@ =Y | Y 1-D 3 1+[s(5)[-[s (%)

B=1 aeS(n) k<m
a<m k=Bmoda
a=PBmoda

«

S o0 (OO 1S90 S B > (IO IO o

(0%
p=1 a€S(n) B=1 k<m
as<m k=pBmoda
a=fmoda

After applying triangle inequality, we take advantage of the fact that |w| = 1:

() < SR |5 (2)] - 2 1+B§:|wﬁ| S(M)-p ¥ 1

B=1 aeS(n) k<m
a<m k=Bmoda
a=Pmoda

Q

sl S ls@l-r X

B=1 aeS(n) k<m
a<m k=Bmoda
a=Bmoda

13
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And since ), 1=[Z]>"
k<m
k=Bmoda

aES( )
a<m

a=Fmoda

)0

You can show both quantities in the outer absolute value signs are positive, so we can
remove those absolute value signs:

men= (@] 3 0)<E(sG)-25)

a<m
a=fmoda

Doing the summation:

n(e)] < 205 ()] -2 > 1o

B=1 a€eS(n
a<m
a=Lmoda
Then we can notice that:
E > > 15(n)] - 1S(n —m)|
B=1 a€eS(n) " Y
a<m The number of elements in S(n)  An upper bound on the elements in S(n) above m
a=Fmoda

The number of elements in S(n) below m

So:

am(@)] < 208 ()| = 18()] + 1S(n — m)| — Dm

[S(n)] [S(n

= inf <15 ( L we know |S(n)| > Dn:

Since D = lim

m

4 ()] < 205 (2

a))—Dn+|S(n—m)|—Dm

14
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Anshula Gandhi
After both adding and subtracting 2Dm to the right hand side and performing some

manipulations:
|gm (w)] < <2a ‘S (%)‘ — 2Dm> + (|S(n —m)| — Dn + Dm)
= 2a HS(%)‘ -D m] +[|S(n—m)| — D+ (n—m)]

Now, note that we can find a ‘monotone majorant’ of anything of the form |S(z)| — Dz,

[S(@)] = Dz < max{|S(¢)] — D]

since:

TV
Call this function F(x)

So we end up with our desired bound.:

15
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Lemma A.4. The polynomial q is o(n).
Proof:
Remember, we start with arbitrary € > 0, and we want to show |q(z)| < 22en.

Because of previous lemmas, we already have that:

m<n
2m n n
————|n|2aF (=) + F 20F (=) + F
< |y PReF () + F)] + 0P (2) + ()
(Annoying parameters debrief). Recall F(x) = max [|S(t)| — Dt], which is monotonic
and lim 22 = 0. So since F( ) gets arbitrarily small, we can choose an n depending

T—r00
on € such that when n > ng then % < e. Then we choose N = Ln—oj Finally, since
we are trying to prove a statement regarding the limit of n, we can choose n big enough

such that n > ny, where n > ny implies F( ) < P

Since N = | J we can apply a few manipulations to find = < "2, so:
27 n
lq(2)] < —IZOéF( )+ Em)] + [2aF (=) + F(n)]
21Ny
= [2aF(Z)+ F } 1
ap(2)+ P |14 772

Now we apply a case analysis.

Case 1: o < n.

n 21Ny
i) < [2ar(2) + £ |14 2222
< 2a + F(n)] [1 + 27m0} (Since F(g) < F(n) by monotonicity of F)
= 20+ 1] {1 + QWO]
271'710
< [1 + - } F(n)
<3 [1 + 27m0} F(n) (Since o < ng by assumption)
=no | | F(n)

= ng [3 + 67 [ } (Since F(n) < o by case assumption)
o

= 22en (Since 3 + 6 < 22)

16
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Case 2: o« > ng.

We know that x > ng —> F(z) < ex. We can specialize this to:

* 2 >ng = F(%) < €l Indeed, this is true, since « < N by Dirichlet, so
a< &
= e
en>ny = F(n) < en. Indeed, this is also true, since lf% > nyg, surely
n > ng
So now
I n 2T
lq(2)| < ZOzF(E) + F(n)] [1 + —}
< _QQF(ﬁ) + F(n)] 1+ 271] (Since M0 by case assumption)
L « a
< 20 + F(n)} 1+21]  (Since L >ny = F(2) <l
i a a o
< 20elt + ] (14 27] (Sincen > ny = F(n) <en)
L«
< [3en] [1 + 27]
= [en]] ]
< 22en (Since 3 + 6 < 22)

Thus, in either case, for arbitrary € > 0, |¢(2)| < 22en. So |q(2)| = o(n).

17
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B Appendix: Dirichlet’s Approximation Theorem

Dirichlet’s Approximation Theorem says we have lots of ways to use rationals to efficiently
approximate irrationals. In particular, if you’re trying to approximate any r € R, then you can get
arbitrarily close o it (5757 for any V€ N...kind of) by using a rational approximation involving a
particular o € {1,...,n} and particular p € Z. That is:

Vr € R,VN € N,Ja € [n],3p € Z s.t.
Y <o
~a(N+1)

We can naturally extend this to saying we have lots of ways to use roots of unity to efficiently
approximate non-roots of unity, because:

o 2rimational jq 4 root of unity

o e2miirrational i not a root of unity

In our particular application to Roth’s theorem, we want to show that given a fixed z = ¢ on
the unit circle, we can always find a root of unity w (s.t. w* = 1 and o < N) that is close to it. So,
in this case, the rational we want to approximate is the normalized argument of z: r = %. So we
have:

Ja € [n],Ip € Z s.t.
0 p < 1

ot al = a(N+1)

Multiplyng both sides by 27, we have

Ja € [n],Ip € Z s.t.
2m

<

~a(N+1)

27p

p-

a
What this is telling us is that for any fixed point on the unit circle with angle 0, there is always
going to be a point with angle =~ 272 that is close to it (in particular, within —2%— VD N =y of it). And that

close point, thatisw = e s , 1s indeed a root of unity satisfying w* =1 and oo < N.
We are almost done: we have that

2

— <7
|arg z — argw| < SN T 1)

But we want a bound of the form:
|z —w| <7

18
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Question 15. If we know the angle between two points z and w on the unit circle, how can we
tell how far apart they are?

g uls g = |m — z| uay |m3re — z Bre | = g mouy am
J1vy1 purf jm nog spurod omj ayj uaamiaq 2)3up ayj Su1jIIS1q WDLSDIP D MDA(] *ST IIMSUY

So, we know

|z —w| < 2sin

T
a(N +1)
And since sin x < x for positive z:

2T

—ul< —
2 Cd|_0z(N—|—1)

So this tells us that, just like we needed, given any fixed point z on the unit circle, we never have
to travel farther than ﬁ to find a root of unity w close to it satisfying w® =1 and o < N.

It’s satisfying to see how nicely this bound covers the unit circle. For example, choose N = 3
and see how far we have to travel from each of the four relevant roots of unity...

ZL\ n
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