
.

Refining Conjectures

via

Proof-Based Generalization

Anshula Gandhi

Timothy Gowers

Anand Rao Tadipatri

The University of Cambridge

.

.

 

What is “Proof-Based Generalization”?
As mathematicians, we typically look back over what we have proven, and see if
it lends itself to some straightforward generalization — one that doesn’t
really require modification of the proof.

Example: When we look at the standard proof that

  is irrational,2

we can quickly notice the “same proof” would work if 2 was replaced by any
prime. That is, we run a proof-based generalization on it to yield

 ∀ primes p, is irrational.p

What is “Proof-Based Generalization”?
As mathematicians, we typically look back over what we have proven, and see if
it lends itself to some straightforward generalization — one that doesn’t
really require modification of the proof.

Example: When we look at the standard proof that

  is irrational,2

we can quickly notice the “same proof” would work if 2 was replaced by any
prime. That is, we run a proof-based generalization on it to yield

 ∀ primes p, is irrational.p
Proof-Based Generalization := a generalization of a proof in which the
hypotheses are weakened as much as the proof will allow.

What is “Proof-Based Generalization”?
But from the standard proof that   2 is irrational, it is more difficult to see
that:

 ∀p, p is not a perfect square ⟹ is irrational.p

 So, we would not consider the above a proof-based generalization.

.

.

 

How Do We Refine Conjectures?
When people think of conjectures, they tend to think of big open problems (e.g.
P = NP). But conjecturing also happens in research on a day-to-day basis —
especially when conjecturing an intermediate statement.

 

How Do We Refine Conjectures?
When people think of conjectures, they tend to think of big open problems (e.g.
P = NP). But conjecturing also happens in research on a day-to-day basis —
especially when conjecturing an intermediate statement.

 

When we do this, we are implicitly conjecturing both  P ⟹ R and  R ⟹ Q.
And we often must refine this  R until it is “just right” (that is, proving
 P ⟹ R and  R ⟹ Q is easier than proving  P ⟹ Q).

In this talk, we will discuss a method for refining  R toward this goal.

What do they have to do with each other?

 

Finding Intermediate Statements
Well, coming up with a suitable intermediate statement is hard.

 

It turns out proof-based generalization can help. Here’s how…

How To Find Intermediate Statements
Suppose we want to prove some statement  ∀x, P (x) ⟹ Q(x).

 

How To Find Intermediate Statements
Our work focuses on the following two ways of generating an intermediate
statement  R: by weakening the hypothesis  P , or by strengthening the
conclusion  Q.

 

And while we might luck out and immediately find some  R such that
 ∀x, P (x) ⟹ R(x) ⟹ Q(x)…

How To Find Intermediate Statements
…there are two ways in which we can fail:

 

How To Find Intermediate Statements
But there are two ways in which we can fail:

 

Our work focuses on what to do in these two cases.

If R is "too small"…

 

If R is "too small"…
Suppose we create an initial intermediate statement  R by strengthening the
conclusion  Q.

 

Then, we have that  R ⟹ Q , but it is not obvious whether  P ⟹ R:

 P ⟹
?

R ⟹ Q

If R is "too small"…
But now suppose we discover that  P ⟹ R by constructing a counterexample.

 

 ∃y, P (y) ∧ ¬R(y)

If R is "too small"…
It often helps us to generalize the counterexample  y to a class of counter-
examples  S . That is:

 

 ∀y, S(y) ⟹ P (y) ∧ ¬R(y)

If R is "too small"…
So, we use proof-based generalization on the statement that  y is a
counterexample, together with its proof, to obtain a class  S .

 

 ∀y, S(y) ⟹ P (y) ∧ ¬R(y)

If R is "too small"…
We then hope the converse of  S ⟹ P ∧ ¬R is true as well (which means we
have found the most general class of counterexamples), we have:

 

 ∀y, S(y) ⟺ P (y) ∧ ¬R(y)

That is, we have determined, in some sense, the “entire reason” why  P ⟹ R...

If R is "too small"…
…which means a new candidate for an intermediate statement is  R ∨ S, since:

 

 P ⟹ R ∨ S ⟹ Q

If R is "too big"…

 

If R is "too big"…
Suppose we make the initial intermediate statement by weakening the
hypothesis  P .

 

Then, we have that  P ⟹ R, but it is not obvious whether  R ⟹ Q:

 P ⟹ R ⟹
?

Q

If R is "too big"…
Suppose we end up proving that  R ⟹ Q by constructing a counterexample.

 

 ∃y, R(y) ∧ ¬Q(y)

If R is "too big"…
Again, we would like to eliminate the reason  R doesn’t imply  Q.

 

 ∃y, R(y) ∧ ¬Q(y)

If R is "too big"…
So, we use proof-based generalization on the statement that  y is a
counterexample, together with its proof, to obtain a class  S .

 

 ∀y, S(y) ⟹ R(y) ∧ ¬Q(y)

If R is "too big"…
We then hope that we have actually found the most general class of
counterexamples to  R ⟹ Q…

 

If R is "too big"…
…so, in particular, we hope that the converse is also true. This would mean we
have found the “entire reason” that  R ⟹ Q.

 

 ∀y, S(y) ⟺ R(y) ∧ ¬Q(y)

If R is "too big"…
Consequently, a new candidate for an intermediate statement is  R ∧ ¬S or
equivalently  R ∖ S.

 

Iterative Conjecture Refinement
Problem: But…what if we don’t immediately find the “entire reason” the
implication doesn’t hold?

 

Iterative Conjecture Refinement
Problem: But…what if we don’t immediately find the “entire reason” the
implication doesn’t hold?

 

Iterative Conjecture Refinement
Problem: But…what if we don’t immediately find the “entire reason” the
implication doesn’t hold?

 

Iterative Conjecture Refinement
Problem: But…what if we don’t immediately find the “entire reason” the
implication doesn’t hold?

 

Iterative Conjecture Refinement
Solution: If the class of counterexamples  S is not big enough… we can repeat
this process on the refined intermediate statement .

 

Iterative Conjecture Refinement
Solution: If the class of counterexamples  S is not big enough, we can repeat
the refinement process on the new intermediate statement.

 

(We couldn’t eliminate the entire reason  R ⟹ Q, but we could eliminate part
of it).

Iterative Conjecture Refinement
Solution: If the class of counterexamples  S is not big enough, we can repeat
the refinement process on the new intermediate statement.

 

Iterative Conjecture Refinement
Solution: If the class of counterexamples  S is not big enough, we can repeat
the refinement process on the new intermediate statement.

 

Iterative Conjecture Refinement
Solution: If the class of counterexamples  S is not big enough, we can repeat
the refinement process on the new intermediate statement.

 

Eventually, we have:  P ⟹ R ⟹′′′ Q.

Conjecture Refinement, Diagrammatically
These diagrams provide an explanation for why we have the intuitions we do
as mathematicians about how to conjecture and how to adapt our conjecturing
approaches.

 

Is there a concrete example of this approach in action?

An Example of Conjecture Refinement
I have asked professors, graduate students, undergraduate students, and non-
mathematicians the following question.

Almost everyone who discovered the proof used more or less the
same process of conjecture generation and refinement.

An Example of Conjecture Refinement
Given  2n points on a plane, does there always exist a line such that  n points are
strictly on one side of the line, and  n strictly on the other?

 

An Example of Conjecture Refinement
Given  2n points on a plane, does there always exist a line such that  n points are
strictly on one side of the line, and  n strictly on the other?

 

An Example of Conjecture Refinement
A reasonable first conjecture is: Any line, translated appropriately, should do
the trick.

 

An Example of Conjecture Refinement
A reasonable first conjecture is: Any line, translated appropriately, should do
the trick.

 

 In particular, a horizontal line (appropriately translated) should always work.
(This isn’t a particularly “clever” conjecture…it is a straightforward
strengthening of the conclusion).

An Example of Conjecture Refinement
Implicitly, we are conjecturing the following: A moving horizontal line will
pass through one point at a time. So, appropriately translated, it will
eventually bisect the set. We can refer to this as the “discrete intermediate value
theorem” or “discrete IVT.”

 

An Example of Conjecture Refinement
Implicitly, we are conjecturing the following: A moving horizontal line will
pass through one point at a time. So, appropriately translated, it will
eventually bisect the set. We can refer to this as the “discrete intermediate value
theorem” or “discrete IVT.”

 

An Example of Conjecture Refinement
Implicitly, we are conjecturing the following: A moving horizontal line will
pass through one point at a time.

 

An Example of Conjecture Refinement
We then disprove the conjecture: we find a set of points such that a horizontal
line does not pass through exactly one point at a time as it is translated.

 

An Example of Conjecture Refinement
We then disprove the conjecture: we find a set of points such that a horizontal
line does not pass through exactly one point at a time as it is translated.

 

An Example of Conjecture Refinement
We learn from the disproof by generalizing the failure. If any point set
contains two points in a horizontal line, discrete IVT doesn’t hold (and thus,
there might not exist a horizontal line which bisects the set).

 

An Example of Conjecture Refinement
We learn from the disproof by generalizing the failure. If any point set
contains two points in a horizontal line, discrete IVT doesn’t hold (and thus,
there might not exist a horizontal line which bisects the set).

 

An Example of Conjecture Refinement
We learn from the disproof by generalizing the failure. If any point set
contains two points in a horizontal line, discrete IVT doesn’t hold (and thus,
there might not exist a horizontal line which bisects the set).

 

An Example of Conjecture Refinement
We recognize that because we’ve found the entire reason that the implication is
false, we can formulate a better intermediate statement.

 

An Example of Conjecture Refinement
Then, we run proof-based generalization again — generalizing
“horizontal” to an arbitrary slope.

 

An Example of Conjecture Refinement
We run proof-based generalization on the new implication — generalizing
“horizontal” to an arbitrary slope.

 

An Example of Conjecture Refinement
We run proof-based generalization on the new implication — generalizing
“horizontal” to an arbitrary slope.

 

An Example of Conjecture Refinement
Now we’re on our way to finishing the proof. We just need to show that the
second possibility doesn’t occur for all slopes…

 

An Example of Conjecture Refinement

Only
 
(2

2n) “forbidden” slopes (i.e. a line with that slope intersects 2 points)
exist…

 

An Example of Conjecture Refinement

Only
 
(2

2n) “forbidden” slopes (i.e. a line with that slope intersects 2 points)
exist…so any other slope must obey “discrete IVT” on  S , and therefore bisect
the set.

 

Note…
We don’t have to come up with particularly “clever” initial conjectures!

As long as we can learn from the failures of our disproved conjectures, we
can often be guided towards more sophisticated, clever conjectures by building
on top of more straightforward ones.

An Algorithm to Generalize Proofs
We applied (in our heads) a proof-based generalization algorithm (by
generalizing “as far as the proof allows”) several times in the lines-bisecting-
points example...

This method of proof-based generalization lends itself to mechanization…

An Algorithm to Generalize Proofs
We’ve implemented a proof-based generalization algorithm in Lean. That
is, we’ve developed an algorithm that can take in a mathematical proof, and
outputs a more general statement that the “same” proof works for.

 

This algorithm builds on the work of Olivier Pons (“Generalization in type
theory based proof assistants”), who implemented a precursor to this algorithm
in Rocq.

An Algorithm to Generalize Proofs
Suppose we prove:

  is irrational. 2

 

An Algorithm to Generalize Proofs
Suppose we prove:

  is irrational. 2

 

This algorithm examines the statement and its proof, and by checking which
lemmas in the proof are used, generalizes to the theorem:

 ∀ primes p, is irrational.p

An Algorithm to Generalize Proofs
Suppose we prove:

The union of two sets of size  2 has size at most  4.

 

An Algorithm to Generalize Proofs
Suppose we prove:

The union of two sets of size  2 has size at most  4.

 

The algorithm recognizes that the  4 is actually a  2 + 2, and that the  2s need
not be generalized to the same variable (abilities we’ve added to the algorithm
which weren’t present in the precursor). So it generalizes to the theorem:

The union of sets of size  n and  m has size at most  n + m.

Applications
We want to elucidate the process of mathematical proof finding — both to aid
mathematicians, and to aid computers (which then aid mathematicians).

 

How Does This Aid Mathematics?
A lot of people find it hard to get started with mathematical research.

 

The advice to students to just “do a lot of proofs” isn’t always helpful. If we can
better understand how research mathematics is done — including
how we conjecture and how we generalize, we can more effectively
teach this skill.

Thank You
Questions?

