
I’m going to talk about this particular mathematical proof technique –– the Polynomial 
Method –– and at the end, discuss how feasible it might be to formalize or automate 
it.



I’ll start by talking about what the method is, spend the majority of the talk delving into 
two different proofs that use this method, and we can conclude by discussing 
applications of automated theorem proving to this method.



The polynomial method is a single proof technique that’s proved a whole lot of 
theorems, mostly in combinatorics.  



The technique involves starting with some problem in combinatorics...



...and then reducing the problem to a problem that has to do with a polynomial.





Then, we figure out some properties of the polynomial (often involving where the 
polynomial equals zero).



And then, we use that information to deduce some information about the original 
combinatorics problem.





And so why do we care?  It seems pretty powerful.  It’s only been out in its current 
form for about 10 years, and already it has solved some long-standing open problems 
(many with proofs less than a page long).



For example...







And so the point of this talk is to get everybody’s ideas on a question I’ve been asking 
myself: If we wanted to make a tool that helped mathematicians solve problems using 
the polynomial method, what should that tool be?  (And yes, this is quite a vague, 
open-ended question...)

But in any case, while you guys are thinking about that, I’m going to go over some 
details of proofs that use this technique, and maybe it will inspire us.



The polynomial method is essentially a successive application of several important 
lemmas.  Some key ones are as follows...



The first of these is the Vanishing lemma, which, roughly stated, means that if a 
polynomial vanishes too many times, it vanishes everywhere.



We already have an intuitive sense of this.  For example, if we have a line, we can 
make it zero at any one point.



But if we try to make that line zero at two points...



It vanishes...



And is actually the zero function.



A similar phenomenon happens with higher degree polynomials.



We know we can make a quadratic zero at any two points.



...but as soon as we try to make it zero at three points...



...it vanishes...



...and becomes the zero polynomial.



We can generalize this statement further...



...and say that if we try to make a d-degree polynomial vanish on q points in a finite 
field where d < q, then...



...the polynomial vanishes everywhere...



...and is the zero polynomial.



The next important lemma that is often used when applying the polynomial method is 
the Interpolation lemma.
Again loosely stated, it says that if we’re given few enough points, we can find a low-
degree polynomial that passes through all of them.



We also have an intuitive understanding of this.  For example, we know that given 
any two points...



...we can always find a line that passes through both of them.



However, if we’re given any three points, there’s no guarantee that we can make a 
line go through all of them.



But now say you’re given any three points...



...and you need a quadratic to go through all of them.  We can do that.



But now again, if we’re given any four points, there’s no guarantee that we can make 
a quadratic go through all of them.



The general version of this statement is as follows.





The last key lemma of the polynomial method that I’ll discuss here is called the rigidity 
lemma.  It’s called this way because, roughly stated again, it means that once a line in 
a field passes through too many roots of a low-degree polynomial, it “snaps” into 
place, and then the only points the line passes through must be roots of that 
polynomial.



So, we can consider the n-dimensional vector space F^n over the finite field F.

And then we consider an n-variable F-polynomial (a n-variable polynomial whose 
coefficients lie in F) defined on that vector space.  More formally, P is an element of 
F[X_1, X_2,...X_n].



Then maybe that a line can go through one root of that polynomial...



...And maybe two...



...But perhaps once it goes through a certain number of roots of the polynomial...





...it snaps into place, and the line must be entirely contained within the zeroes of the 
polynomial.



More formally stated, the rigidity lemma is as follows.  Consider a d-degree 
polynomial over a finite field. Every line in that field either (a) passes through at most 
d roots of that polynomial or (b) passes through roots of that polynomial at every point 
along the line.



And that’s it for the lemmas used in the polynomial method.  Now we’ll get in to our 
first application of these lemmas.



This theorem is called the finite-field nikodym problem –– and it is a simplified version 
of the somewhat famous Kakeya problem.



We want to say: Let’s say a set is “Nikodym” if it is a set such that, for every point in 
the vector space, we can always find a line through the point that goes through at 
least “d” points in the Nikodym set.

How small can a Nikodym set be?



Again, we consider a vector space F^n defined over a finite field F.

Here in particular, we can consider the vector space F^3 defined over the finite field 
with three elements.  And let’s set d=2.



Then we know that any set with just one point will not be a Nikodym set of 
characteristic d=2.  Because for example...



...we cannot find a line through that point that intersects the Nikodym set at more than 
d=2 points.



On the opposite end of the spectrum, we know any set that contains all the elements 
of the vector space is trivially a Nikodym set.



Because every line through every point will go through at least d=2 points in the 
Nikodym set.







So the interesting question is, how small can such a set be?  It turns out for this 
vector field F^3 defined over the three-element finite field F, the minimal-size Nikodym 
set has size four.



And you can somehow convince yourself of this just by drawing several lines through 
this set.







But now, we’re concerned with finding these minimal-size sets in a more general 
vector space.



So now, the first step in applying the polynomial method to a problem is turning this 
problem into one related to a polynomial that vanishes.











Then, typically, we try to find some sort of contradiction.

















And now, given the contradiction we found, we can solve the original problem.





...And now, onto our next application of the polynomial method.



This problem is called the cap-set problem.  

A particular case of this problem can be applied to the card game Set –– the relevant 
question being “what is the largest set of cards you can lay out in the game, without 
there being a single “Set” (cards that all have the same attribute)”?   But for the 
purposes of this proof, we’ll stick to the more general statement of the problem.

We consider a vector space F^n defined on a q-element finite field F_q.  Then we 
consider a set “A” in this space with no three-element arithmetic progressions (e.g. 
3,5,7 or 0,1,2).  Obviously if you choose a set A with only two elements, you 
guarantee this condition.  So the interesting question is –– how large can such a set 
be?

As a warning, this proof is more involved...so, I’m just going to focus on the part of the 
proof that employs the polynomial method, and be a little hand-wavy at the other 
parts.



So first, just as before, we want to turn this problem into a problem about a vanishing 
polynomial.



So let’s first suppose that a cap set A can be bigger than we think it is...



...and then find a polynomial that is mostly nonzero on the set 2A.





Now we find a contradiction.



We cleverly construct the above particular matrix, and note that it must contain the 
elements of 2A on its diagonal, and elements of the complement of (2A) everywhere 
else.  Why?



To see this, consider a sequence of numbers {3,4,7,9} that contains no three-element 
arithmetic progression.  Note that the diagonal contains elements of 2A, and elements 
of the complement on the off-diagonal.



But now, if we consider a sequence of numbers {3,6,7,9} that does contain the three-
element arithmetic progression {3,6,9}, note that the diagonal contains elements of 
2A, and off-diagonal also contains an element of 2A (namely, 12).

This is because saying a sequence has no three-term arithmetic progressions is 
equivalent to saying the sequence has no x,y,z such that x+z=2y.  (You can convince 
yourself of this by considering the equations x+c=y and y+c=z, and simplifying to x-
y=y-z, and then further to x+z=2y.)



In any case, we’re assuming that our set A has no three-term arithmetic progressions, 
so for this small example, we can switch back to this sample matrix where 
A={3,4,7,9}.



We now want to apply our monomial function f to every element of the matrix.



And end up with a matrix with a certain minimal rank.



But (and now this is the hand-wavy part), we can also apply a separate lemma, that 
shows the matrix has strictly less than that rank.  So we have a contradiction.



And so...



We can conclude that our assumption was false.



And therefore the cap set size is bounded above by c^n.  (Although, note that we 
didn’t prove the bound is tight, although it is probably pretty close to tight.)





A fun fact for anyone interested –– as of 2019, this problem has actually been 
formalized in Lean.



And now back to the question of the talk –– is there something interesting to do with 
this information?


