The Polynomial Method

I’m going to talk about this particular mathematical proof technique — the Polynomial
Method — and at the end, discuss how feasible it might be to formalize or automate
it.




Talk Outline / g q

e What the polynomial method is and why we care
e Two different proofs that utilize the polynomial method

e Discussion on potential formalization or automation of this method

I’ll start by talking about what the method is, spend the maijority of the talk delving into
two different proofs that use this method, and we can conclude by discussing
applications of automated theorem proving to this method.




What it is

The polynomial method is a single proof technique that's been

usedto solve a bunch

of seemingly unrelated combinatorics

problems.

The polynomial method is a single proof technique that’s proved a whole lot of
theorems, mostly in combinatorics.




What it is

It involves

1 Taking a combinatorics problem

The technique involves starting with some problem in combinatorics...




What it is

It involves

1 Taking a combinatorics problem and turning it into a
problem about polynomial

...and then reducing the problem to a problem that has to do with a polynomial.




What it is

It involves

1 Taking a combinatorics problem and turning it into a

problem about polynomial




What it is

2 Finding some properties out about the polynomial

Then, we figure out some properties of the polynomial (often involving where the
polynomial equals zero).




What it is

Turning the polynomial problem back into the original

combinatorics problem

And then, we use that information to deduce some information about the original
combinatorics problem.




What it is

3. Turning the polynomial problem back into the origina




Why it’s impressive

The polynomial methodis a single proof technique that's been
usedtosolve a ch of seemingly unrelated combinatorics
problems (¢ g standing open problems, and often with one-
page-or-lessproofs). Forexample

And so why do we care? It seems pretty powerful. It's only been out in its current
form for about 10 years, and already it has solved some long-standing open problems
(many with proofs less than a page long).




Why it’s impressive

e Finite Field Kakeya Conjecture(Geometric measure
theory)

For example...




Why it’s impressive

- Cap set problem (Additive number theory)




Why it’s impressive

Erdos distance problem (Combinatorial incidence
geometry)




The point of this talk

e |f we wanted to make a tool that helped mathematicians solve problems using
the polynomial method, what should that tool be?

And so the point of this talk is to get everybody’s ideas on a question I've been asking
myself: If we wanted to make a tool that helped mathematicians solve problems using
the polynomial method, what should that tool be? (And yes, this is quite a vague,
open-ended question...)

But in any case, while you guys are thinking about that, I’'m going to go over some
details of proofs that use this technique, and maybe it will inspire us.




Some Kkey lemmas used in the polynomial method

The polynomial method is essentially a successive application of several important
lemmas. Some key ones are as follows...




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma) If a polynomial vanishes
too many times, it vanishes everywhere

The first of these is the Vanishing lemma, which, roughly stated, means that if a
polynomial vanishes too many times, it vanishes everywhere.




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma)If a polynomial vanishes too
many times, it vanishes everywhere

We already have an intuitive sense of this. For example, if we have a line, we can
make it zero at any one point.




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma)If a polynomial vanishes too
many times, it vanishes everywhere

But if we try to make that line zero at two points...




Some Key lemmas used in
the polynomial method

e (Vanishing Lemma)|f a polynomial vanishes too
many times, it vanishes everywhere

It vanishes...




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma)If a polynomial vanishes too
many times, it vanishes everywhere

And is actually the zero function.




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma)If a polynomial vanishes too
many times, it vanishes everywhere

A similar phenomenon happens with higher degree polynomials.




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma)If a polynomial vanishes too
many times, it vanishes everywhere

We know we can make a quadratic zero at any two points.




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma)If a polynomial vanishes too
many times, it vanishes everywhere

...but as soon as we try to make it zero at three points...




Some Key lemmas used in
the polynomial method

e (Vanishing Lemma)|f a polynomial vanishes too
many times, it vanishes everywhere

...it vanishes...




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma)If a polynomial vanishes too
many times, it vanishes everywhere

...and becomes the zero polynomial.




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma) If a polynomial vanishes
too many times, it vanishes everywhere
More precisely: If a d-degree polynomial vanisheson
q points in afinite field where d < q, then it must
vanish everywhere, and be the zero-polynomial

We can generalize this statement further...




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma) If a polynomial vanishes
too many times, it vanishes everywhere

More precisely: If a d-degree polynomial vanisheson
q points in afinite field where d < g, then it must
vanish everywhere, and be the zero-polynomial

...and say that if we try to make a d-degree polynomial vanish on q points in a finite

field where d < q, then...



Some Key lemmas used in
the polynomial method

e (Vanishing Lemma) If a polynomial vanishes
too many times, it vanishes everywhere
More precisely: If a d-degree polynomial vanishes on
q points in afinite fieldwhere d < q, then it must
vanish everywhere, and be the zero-polynomial

...the polynomial vanishes everywhere...




Some Kkey lemmas used in
the polynomial method

e (Vanishing Lemma) If a polynomial vanishes
too many times, it vanishes everywhere
More precisely: If a d-degree polynomial vanisheson
q points in afinite field where d < q, then it must
vanish everywhere, and be the zero-polynomial

...and is the zero polynomial.




Some Kkey lemmas used in
the polynomial method

e (Interpolation Lemma) If we're given few
enough points, we can find a low-degree
polynomial that passes through all of them

The next important lemma that is often used when applying the polynomial method is
the Interpolation lemma.

Again loosely stated, it says that if we're given few enough points, we can find a low-
degree polynomial that passes through all of them.




Some Kkey lemmas used in
the polynomial method

e (Interpolation Lemma) If we're given few
enough points, we can find a low-degree
polynomial that passes through all of them

We also have an intuitive understanding of this. For example, we know that given
any two points...




Some Kkey lemmas used in
the polynomial method

e (Interpolation Lemma) If we're given few
enough points, we can find a low-degree
polynomial that passes through all of them

...we can always find a line that passes through both of them.




Some Key lemmas used in
the polynomial method

e (Interpolation Lemma) If we're given few
enough points, we can find a low-degree
polynomial that passes through all of them

However, if we're given any three points, there’s no guarantee that we can make a
line go through all of them.




Some Key lemmas used in
the polynomial method

e (Interpolation Lemma) If we're given few
enough points, we can find a low-degree
polynomial that passes through all of them

But now say you’re given any three points...




Some Key lemmas used in
the polynomial method

e (Interpolation Lemma) If we're given few
enough points, we can find a low-degree
polynomial that passes through all of them

...and you need a quadratic to go through all of them. We can do that.




Some Key lemmas used in
the polynomial method

e (Interpolation Lemma) If we're given few
enough points, we can find a low-degree
polynomial that passes through all of them

But now again, if we're given any four points, there’s no guarantee that we can make
a quadratic go through all of them.




Some Key lemmas used in
the polynomial method

e (Interpolation Lemma) If we're given few
enough points, we can find a low-degree

polynomial that passes through all of them
More precisely: If we're given less than (#7) points in

an n-dimensional finite field then canfindad-
degree polynomial that will passthrough allthose
points

The general version of this statement is as follows.




Some Key lemmas used in
the polynomial method

e (Interpolation Lemma) If we're given few
enough points, we can find a low-degree
polynomial that passes through all of them

More pre« ly. If we're given less than (#7) points in
ann-dim onal finite field, then we canfind a d-
omial that will passthrough allthose

deare
dgegre

points




Some Kkey lemmas used in
the polynomial method

e (Rigidity Lemma) Once aline in afield passes
through too many roots of a low-degree
polynomial, it "snaps” into place and then the
only points the line passes through must be

roots

The last key lemma of the polynomial method that I'll discuss here is called the rigidity
lemma. It's called this way because, roughly stated again, it means that once a line in
a field passes through too many roots of a low-degree polynomial, it “snaps” into

place, and then the only points the line passes through must be roots of that
polynomial.




the polynomial method

Some key lemmas used in ‘ - 1 ‘ \.ﬂl

* (Rigidity Lemma) Once aline in afield passes
through too many roots of a low-degree
polynomial, it "snaps” into place and then the
only points the line passes through must be
roots

So, we can consider the n-dimensional vector space F*n over the finite field F.

And then we consider an n-variable F-polynomial (a n-variable polynomial whose

coefficients lie in F) defined on that vector space. More formally, P is an element of
FIX_1, X_2,..X_n].




Some Kkey lemmas used in
the polynomial method

* (Rigidity Lemma) Once aline in afield passes
through too many roots of a low-degree
polynomial, it “snaps” into place and then the
only points the line passes through must be
roots

Then maybe that a line can go through one root of that polynomial...




Some Key lemmas used in
the polynomial method

* (Rigidity Lemma) Once aline in afield passes
through too many roots of a low-degree
polynomial, it “snaps” into place and then the
only points the line passes through must be
roots

...And maybe two...




Some Kkey lemmas used in
the polynomial method

* (Rigidity Lemma) Once aline in afield passes
through too many roots of a low-degree
polynomial, it “snaps” into place and then the
only points the line passes through must be
roots

...But perhaps once it goes through a certain number of roots of the polynomial...




Some Key lemmas used in
the polynomial method

* (Rigidity Lemma) Once aline in afield passes
through too many roots of a low-degree
polynomial, it “snaps” into place and then the
only points the line passes through must be
roots




Some Key lemmas used in
the polynomial method

* (Rigidity Lemma) Once aline in afield passes
through too many roots of a low-degree
polynomial, it “snaps” into place and then the
only points the line passes through must be
roots

...it snaps into place, and the line must be entirely contained within the zeroes of the
polynomial.




Some Kkey lemmas used in
the polynomial method

* (Rigidity Lemma) Once aline in afield passes
through too many roots of a low-degree
polynomial, it “snaps” into place and then the
only points the line passes through must be
roots

polynomial over
er(a)passes
ynomial or (b

ough atmostdroo
passes ah roots

More formally stated, the rigidity lemma is as follows. Consider a d-degree
polynomial over a finite field. Every line in that field either (a) passes through at most

d roots of that polynomial or (b) passes through roots of that polynomial at every point
along the line.




And that’s it for the lemmas used in the polynomial method. Now we’ll get in to our
first application of these lemmas.




Polynomial Method Application =1:
The Finite-field Nikodym Problem

« M

m

This theorem is called the finite-field nikodym problem — and it is a simplified version

of the somewhat famous Kakeya problem.




Polynomial Method Application =1:
The Finite-field Nikodym Problem

We want to say: Let’s say a set is “Nikodym” if it is a set such that, for every pointin
the vector space, we can always find a line through the point that goes through at

least “d” points in the Nikodym set.

How small can a Nikodym set be?




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

Again, we consider a vector space F*n defined over a finite field F.

Here in particular, we can consider the vector space F*3 defined over the finite field
with three elements. And let’s set d=2.




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

Then we know that any set with just one point will not be a Nikodym set of
characteristic d=2. Because for example...




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

Not
Niwkoda m

...we cannot find a line through that point that intersects the Nikodym set at more than
d=2 points.




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

On the opposite end of the spectrum, we know any set that contains all the elements
of the vector space is trivially a Nikodym set.




Polynomial Method Application =1:

The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

Tr(v(u“ \&.
Niwkoda m

Because every line through every point will go through at least d=2 points in the

Nikodym set.




Polynomial Method Application =1:

The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

Teowalla
Niwoda




Polynomial Method Application =1:

The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

Teowalla
Niwoda




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

So the interesting question is, how small can such a set be? It turns out for this
vector field FA3 defined over the three-element finite field F, the minimal-size Nikodym
set has size four.




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

Min~=st2l
Nikoda m

And you can somehow convince yourself of this just by drawing several lines through
this set.




Polynomial Method Application =1:

The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

Min~5t2&
Nikoda m




Polynomial Method Application =1:

The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

Min~5t2&
Nikoda m




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Let F" be a finite field in n-dmenzions. Let E be a Nikodym set of characteristic
d within F, i.e. foreach point x €F" you can find a directiony €F" such that the
line {x +ty:t €F] intersects E at more than d points. How amall can such a set
be?

But now, we're concerned with finding these minimal-size sets in a more general
vector space.




Polynomial Method Application =1:
The Finite-field Nikodym Problem

1. Turn the problem into a polynomial that vanishes

So now, the first step in applying the polynomial method to a problem is turning this
problem into one related to a polynomial that vanishes.




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Suppose, for contradiction, we have a Nikodym set E of size
less than «..C.




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Then by the interpolstion lemma




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Then by the interpolstion lemma

nerpolation Lemma If we're ghven
less !an ..C, polnts In an n-

aimensional fialle flely ten we can
fing 3g-0sgree polynomial Mt wil
pass twough all hose points




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Then by the interpolstion lemma... theset is small enough that
we can find a non-zero polynomial of degree d such that all
elements of E are zeroes of the polynomial

nerpolation Lemma: F we're ghen
less man C.points In an n-

amensional fale fleld hen we can
fing 3 g-0sgree polynomial at will
pass Mrough all those points




Polynomial Method Application =1:
The Finite-field Nikodym Problem

2. Find a contradiction

Then, typically, we try to find some sort of contradiction.




Polynomial Method Application =1:
The Finite-field Nikodym Problem

By the problem statement, there's a line through every point
that goes through at least d pointsin the setE




Polynomial Method Application =1:
The Finite-field Nikodym Problem

So by the rigidity lemma




Polynomial Method Application =1:
The Finite-field Nikodym Problem

So by the rigidity lemma

Rglaty Lemma: Consioer 3
osgree polynomial over 3 fnte
fleld Every ine Intat fleld

elter (3) passes vough at

most d roats of tat polynomial
or (D) passes Mwough roots of
mat polynomial at every point
along e line




Polynomial Method Application =1:
The Finite-field Nikodym Problem

e So by the rigidity lemma. _there’s a line through every point
that goes through only zeros of the polynomial.

Rglaty Lemma: Consioer 3
osgree polynomial over 3 fnte
fleld Every ine Intat fleld

elter (3) passes vough at

most d roats of tat polynomial
or (D) passes Mwough roots of
mat polynomial at every point
along e line




Polynomial Method Application =1:
The Finite-field Nikodym Problem

So the polynomial vanishes everywhere, and by the vanishing
lemma, is the zero polynomial




Polynomial Method Application =1:
The Finite-field Nikodym Problem

We have a contradiction: this polynomial was supposed to be
non-zero




Polynomial Method Application =1:
The Finite-field Nikodym Problem

We have a contradiction: this polynomisl was supposed to be
non-zero




Polynomial Method Application =1:
The Finite-field Nikodym Problem

Solve the original problem

And now, given the contradiction we found, we can solve the original problem.




Polynomial Method Application =1: o U V‘l

The Finite-field Nikodym Problem ‘ ¢ I l ‘ _ .l




Polynomial Method Application =1:
The Finite-field Nikodym Problem

...And now, onto our next application of the polynomial method.




Polynomial Method Application =2:
The Cap Sel Problem

A cap setis a subset ofthe vector space F_"with no three-element

arithmetic progressions. How big can such a setbe?

This problem is called the cap-set problem.

A particular case of this problem can be applied to the card game Set — the relevant
question being “what is the largest set of cards you can lay out in the game, without
there being a single “Set” (cards that all have the same attribute)’? But for the
purposes of this proof, we’ll stick to the more general statement of the problem.

We consider a vector space F"n defined on a g-element finite field F_q. Then we
consider a set “A” in this space with no three-element arithmetic progressions (e.g.
3,5,7 or 0,1,2). Obviously if you choose a set A with only two elements, you
guarantee this condition. So the interesting question is — how large can such a set
be?

As a warning, this proof is more involved...so, I'm just going to focus on the part of the
proof that employs the polynomial method, and be a little hand-wavy at the other
parts.



Polynomial Method Application =2:
The Cap Sel Problem

1. Turn the problem into a polynomial that

So first, just as before, we want to turn this problem into a problem about a vanishing
polynomial.




e
Polynomial Method Application =2: , U V‘
The Cap Sel Problem ‘ . l t ! .l
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Suppose, for contradiction, thatthe cap set
A is asetof size biggerthan cfor some constantc <

q

So let’s first suppose that a cap set A can be bigger than we think it is...




Polynomial Method Application =2:
The Cap Sel Problem

Then by a variant of the interpolation lemma, we will
be able to find a monomial functionfthat is mostly
nonzero onthe set2A

...and then find a polynomial that is mostly nonzero on the set 2A.



Polynomial Method Application =2:
The Cap Sel Problem

Then by a variant of the interpolation lemma, we will
be able to find a monomial functionfthat is mostly
nonzero onthe set2A, andvanishesonits
complement (2A)




Polynomial Method Application =2:
The Cap Sel Problem

2. Find a contradiction

Now we find a contradiction.




Polynomial Method Application =2:
The Cap Sel Problem

onstructa matrix(a; + a ); made ofthe sums
ments of A... that must mean it containsthe

2A0onits diagonal, and elements of (2A

We cleverly construct the above particular matrix, and note that it must contain the
elements of 2A on its diagonal, and elements of the complement of (2A) everywhere
else. Why?




Polynomial Method Application =2:
The Cap Sel Problem
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onstructa matrix(a + a ); made ofthe sums
ments of A, that must mean it contains the

ele 2A0onits diagonal, and elements of (2A

To see this, consider a sequence of numbers {3,4,7,9} that contains no three-element
arithmetic progression. Note that the diagonal contains elements of 2A, and elements
of the complement on the off-diagonal.




Polynomial Method Application =2:
The Cap Sel Problem

But now, if we consider a sequence of numbers {3,6,7,9} that does contain the three-
element arithmetic progression {3,6,9}, note that the diagonal contains elements of
2A, and off-diagonal also contains an element of 2A (namely, 12).

This is because saying a sequence has no three-term arithmetic progressions is
equivalent to saying the sequence has no x,y,z such that x+z=2y. (You can convince
yourself of this by considering the equations x+c=y and y+c=z, and simplifying to x-
y=y-z, and then further to x+z=2y.)




Polynomial Method Application =2:
The Cap Sel Problem
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If we constructa matrix(a, + a ), made ofthe sums
of the elements of A, that mustmean it contains the

ele 2A onits diagonal and elements of (2A

In any case, we're assuming that our set A has no three-term arithmetic progressions,
so for this small example, we can switch back to this sample matrix where
A={3,4,7,9}.




Polynomial Method Application =2:
The Cap Sel Problem

W
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We now want to apply our monomial function f to every element of the matrix.




Polynomial Method Application =2:
The Cap Sel Problem

b’

W

And end up with a matrix with a certain minimal rank.




Polynomial Method Application =2:
The Cap Sel Problem

But (and now this is the hand-wavy part), we can also apply a separate lemma, that
shows the matrix has strictly less than that rank. So we have a contradiction.




Polynomial Method Application =2:
The Cap Sel Problem

But we can apply another lemma that shows the matrix must
have a rank strictly less than thatsize. We have a
contradiction

And so...




Polynomial Method Application =2:
The Cap Sel Problem

Solve the original problem

We can conclude that our assumption was false.




Polynomial Method Application =2:
The Cap Sel Problem

And therefore the cap set size is bounded above by c*n. (Although, note that we
didn’t prove the bound is tight, although it is probably pretty close to tight.)




Polynomial Method Application =2:
The Cap Sel Problem




The Cap Set Problem: Formalization in Lean

theorem general_cap_set {a : Type} [discrete_field a] [fintype a] :
3CB:R B>0AC>0AAC < fintype.card a A
V{abc:a} {n: N} {A: finset (fin n - a)},
cx@-a+b+c=0-~

(Wxyz:finn-a, XEA-yEA-2ZEA~aa*X+bey+Cc*2=0-X=YyAX

tA.card s B x C*n

theorem cap_set_problem : 3 B : R,
V {n : N} {A : finset (fin n - Z/32)},
(WVxyz:finn-2/3Z, XEA+yYEA+ZEA-X+y+2Z2=0-X=yAX=12Z)=
tA.card < B x ((((3 : R) / 8)"3 * (207 + 33xreal.sqrt 33))~(1/3 : R))"n

theorem cap_set_problem_specific (n : N) {A : finset (fin n - Z/3Z)}

(hxyz : ¥xyz: finn-2/3Z, XEA-YyEA+ZEA-X+y+2=0-X=yAX=12):

tA.card s 3 * ((((3 : R) / 8)~3 x (207 + 33xreal.sqrt 33))~(1/3 : R))”n

A fun fact for anyone interested — as of 2019, this problem has actually been
formalized in Lean.




Back to the point of the talk

So what is the polynomial method? f we wanted to make a tool that helped

mathematicians solve problems using the

A proof technique

polynomial method, what should that tool

be? Some ideas in order from most to least

realistic

- of Al that sorts through conjecture

A piece of Al that figures out how to transform
combinatorics conjectures into problems

polynomiak

And now back to the question of the talk — is there something interesting to do with
this information?




