
 

 

An Algorithm to Generalize Proofs
We’ve implemented a proof generalization algorithm in Lean. That is, we’ve
developed an algorithm that can take in a mathematical proof, and outputs a
more general statement that the “same” proof works for.

 

This algorithm builds on the work of Olivier Pons (“Generalization in type
theory based proof assistants”), who implemented a precursor to this algorithm
in Rocq.

An Algorithm to Generalize Proofs
Suppose we prove:

  is irrational. 17

 

An Algorithm to Generalize Proofs
Suppose we prove:

  is irrational. 17

 

The only fact that we really use about  17 in proving this is that it is prime.

An Algorithm to Generalize Proofs
Suppose we prove:

  is irrational. 17

 

The only fact that we really use about  17 in proving this is that it is prime.

So, this algorithm examines the statement and its proof, and by checking which
lemmas in the proof are used, generalizes to the theorem:

 ∀ primes p, is irrational.p

(Live Demo)

An Algorithm to Generalize Proofs
The algorithm does not derive the more general theorem — that the square root
of a non-perfect square is irrational — when that reasoning step is not evident
in the proof term.

That is, the algorithm generalizes the theorem only as far as the proof allows.

Other Proof Generalizers
A non-comprehensive list of other software to generalize proofs in dependent
type theory:

-	 (Generalizing proofs in Rocq) Generalization in type theory based
proof assistants by Olivier Pons.

-	 (Generalizing inductive types in Rocq) Ornaments for Proof Reuse
in Coq by Talia Ringer, Nathaniel Yazdani, John Leo, and Dan
Grossman.

-	 (Generalizing typeclasses in Lean 3) Automatically Generalizing
Theorems Using Typeclasses by Alex J. Best.

Our work aims to advance the capabilities of proof generalizers.

An Algorithm to Generalize Proofs:

What’s New?
In particular, we’ve implemented two improvements to state-of-the-art proof
generalization in dependent type theory:

-	 Generalization of repeated constants

-	 Generalization of dependent constants

Here are some examples…

Generalizing Repeated Constants
Suppose we prove:

  +17 17 is irrational.

 

Generalizing Repeated Constants
Suppose we prove:

  +17 17 is irrational.

 

It would be suboptimal to generalize all the  17s in the same way, and yield the
overspecialized proof:

 ∀ primes p, +p p is irrational.

Generalizing Repeated Constants
Suppose we prove:

  +17 17 is irrational.

 

The algorithm should recognize that the  17s play different roles in the
proof, and should be generalized separately. Indeed, it generalizes to the
theorem:

 ∀ primes p and natural numbers n, +p n is irrational.

(Live Demo)

Generalizing Dependent Constants
Suppose we prove:

The union of two sets of size  2 has size at most  4.

 

Generalizing Dependent Constants
Suppose we prove:

The union of two sets of size  2 has size at most  4.

 

The algorithm recognizes that the  4 is actually a  2 + 2, and that the  2s need
not be generalized to the same variable (abilities we’ve added to the algorithm
which weren’t present in the precursor). So it generalizes to the theorem:

The union of sets of size  n and  m has size at most  n + m.

(Live Demo)

Algorithm Description

 

Proof
to generalize.

Proof.
Generalized

to generalize
in the proof.

Constant

Stage 1

Abstract all
occurrences of
the constant
in the proof.

Abstract all
facts about the
constant
in the proof.

Stage 2 Stage 3

Detect other
constants that
depend on the
abstracted
constant.

Stage 4

Detect and
unify related
occurrences
of the
constants.

Stage 5

Extract
metavariables
as
hypotheses.

Produce the
generalized
statement.

Stage 6

If such a constant is found...

If no such constants are found...

Generalizing Non-Numerical Constants
This tactic also works on longer, non-trivial proofs….

Suppose we prove Bézout's identity in the integers.

For any two integers  x and  y = 0, there exist integers  h and  k
such that their greatest common divisor  g can be expressed as a
linear combination  hx + ky = g.

 

Generalizing Non-Numerical Constants

When we want to generalize the integers
 
Z, the algorithm recognizes that the

same argument works in (something close to) an arbitrary Euclidean domain.

 

(Live Demo)

Limitations of Proof Generalization
Proofs with black boxes cannot be directly generalized.

For example…

-	 Implicit uses of definitional equality, or

-	 Reliance on computation rules (e.g. reduceMul)

…all create “black boxes” in the proof term, that then make it difficult to
generalize the proof.

An Algorithm to Generalize Proofs
Proof generalization is (of course) done not only by computers. Human
mathematicians generalize proofs so frequently (e.g. when generalizing the proof
of a counterexample) that we rarely think about it explicitly.

 
Any system that employs human-oriented theorem proving will be a
system that employs proof generalization.

Questions?

	An Algorithm to Generalize Proofs
	An Algorithm to Generalize Proofs
	An Algorithm to Generalize Proofs
	An Algorithm to Generalize Proofs
	An Algorithm to Generalize Proofs
	Other Proof Generalizers
	An Algorithm to Generalize Proofs:  What’s New?
	Generalizing Repeated Constants
	Generalizing Repeated Constants
	Generalizing Repeated Constants
	Generalizing Dependent Constants
	Generalizing Dependent Constants
	Algorithm Description
	Generalizing Non-Numerical Constants
	Generalizing Non-Numerical Constants
	Limitations of Proof Generalization
	An Algorithm to Generalize Proofs
	Questions?

