
   

   



An Algorithm to Generalize Proofs 
We’ve implemented a proof generalization algorithm in Lean. That is, we’ve 
developed an algorithm that can take in a mathematical proof, and outputs a 
more general statement that the “same” proof works for. 

   

This algorithm builds on the work of Olivier Pons (“Generalization in type 
theory based proof assistants”), who implemented a precursor to this algorithm 
in Rocq. 
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Suppose we prove: 
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The only fact that we really use about  17 in proving this is that it is prime. 



An Algorithm to Generalize Proofs 
Suppose we prove: 

   is irrational. 17  

   

The only fact that we really use about  17 in proving this is that it is prime. 

So, this algorithm examines the statement and its proof, and by checking which 
lemmas in the proof are used, generalizes to the theorem: 

 ∀ primes p,  is irrational.p  

(Live Demo) 



An Algorithm to Generalize Proofs 
The algorithm does not derive the more general theorem — that the square root 
of a non-perfect square is irrational — when that reasoning step is not evident 
in the proof term.  

That is, the algorithm generalizes the theorem only as far as the proof allows. 



Other Proof Generalizers 
A non-comprehensive list of other software to generalize proofs in dependent 
type theory: 

-	 (Generalizing proofs in Rocq)  Generalization in type theory based 
proof assistants by Olivier Pons. 

-	 (Generalizing inductive types in Rocq) Ornaments for Proof Reuse 
in Coq by Talia Ringer, Nathaniel Yazdani, John Leo, and Dan 
Grossman.  

-	 (Generalizing typeclasses in Lean 3)  Automatically Generalizing 
Theorems Using Typeclasses by Alex J. Best. 

Our work aims to advance the capabilities of proof generalizers. 



An Algorithm to Generalize Proofs:  

What’s New? 
In particular, we’ve implemented two improvements to state-of-the-art proof 
generalization in dependent type theory: 

-	 Generalization of repeated constants 

-	 Generalization of dependent constants 

Here are some examples…



Generalizing Repeated Constants 
Suppose we prove:  

  +17 17 is irrational.  

   



Generalizing Repeated Constants 
Suppose we prove:  

  +17 17 is irrational.  

   

It would be suboptimal to generalize all the  17s in the same way, and yield the 
overspecialized proof: 

 ∀ primes p, +p p is irrational. 



Generalizing Repeated Constants 
Suppose we prove:  

  +17 17 is irrational.  

   

The algorithm should recognize that the  17s play different roles in the 
proof, and should be generalized separately. Indeed, it generalizes to the 
theorem: 

 ∀ primes p and natural numbers n, +p n is irrational. 

(Live Demo) 



Generalizing Dependent Constants 
Suppose we prove:  

The union of two sets of size  2 has size at most  4.  

   



Generalizing Dependent Constants 
Suppose we prove:  

The union of two sets of size  2 has size at most  4.  

   

The algorithm recognizes that the  4 is actually a  2 + 2, and that the  2s need 
not be generalized to the same variable (abilities we’ve added to the algorithm 
which weren’t present in the precursor). So it generalizes to the theorem: 

The union of sets of size  n and  m has size at most  n + m. 

(Live Demo) 



Algorithm Description 

 

Proof
to generalize.

Proof.
Generalized

to generalize
in the proof.

Constant

Stage 1

Abstract all 
occurrences of 
the constant
in the proof.

Abstract all 
facts about the 
constant
in the proof.

Stage 2 Stage 3

Detect other 
constants that 
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abstracted 
constant.
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generalized 
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Stage 6

If such a constant is found...

If no such constants are found...

 



Generalizing Non-Numerical Constants 
This tactic also works on longer, non-trivial proofs…. 

Suppose we prove Bézout's identity in the integers. 

For any two integers  x and  y = 0, there exist integers  h and  k 
such that their greatest common divisor  g can be expressed as a 
linear combination  hx + ky = g. 

   



Generalizing Non-Numerical Constants 

When we want to generalize the integers 
 
Z, the algorithm recognizes that the 

same argument works in (something close to) an arbitrary Euclidean domain.  

   

(Live Demo) 



Limitations of Proof Generalization 
Proofs with black boxes cannot be directly generalized. 

For example… 

-	 Implicit uses of definitional equality, or 

-	 Reliance on computation rules (e.g. reduceMul) 

…all create “black boxes” in the proof term, that then make it difficult to 
generalize the proof.



An Algorithm to Generalize Proofs 
Proof generalization is (of course) done not only by computers. Human 
mathematicians generalize proofs so frequently (e.g. when generalizing the proof 
of a counterexample) that we rarely think about it explicitly. 

   
Any system that employs human-oriented theorem proving will be a 
system that employs proof generalization. 



Questions? 
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