Automatically Generalizing Proofs and Statements

Anshula Gandhi =
University of Cambridge, UK

Anand Rao Tadipatri &
University of Cambridge, UK

Timothy Gowers &
College de France, Paris, France
University of Cambridge, UK

An Algorithm to Generalize Proofs

We've implemented a proof generalization algorithm in Lean. That is, we’ve
developed an algorithm that can take in a mathematical proof, and outputs a
more general statement that the “same” proof works for.

This algorithm builds on the work of Olivier Pons (“Generalization in type
theory based proof assistants”), who implemented a precursor to this algorithm
in Rocq.

An Algorithm to Generalize Proofs

Suppose we prove:

v/ 17 is irrational.

V¥ Tactic state
example := by

let irrat_sqrt : Irrational (v17) := by {apply irrat_de 1 goal
irrat_sqrt : Irrational V17

An Algorithm to Generalize Proofs

Suppose we prove:

v/ 17 is irrational.

V¥ Tactic state
example := by

let irrat_sqrt : Irrational (v17) := by {apply irrat_de 1goal
irrat_sqrt : Irrational V17

The only fact that we really use about 17 in proving this is that it is prime.

An Algorithm to Generalize Proofs

Suppose we prove:

v/ 17 is irrational.

¥ Tactic state
example := by

let irrat_sqrt : Irrational (v17) := by {apply irrat_de

autogeneralize (17:N) in irrat sgrt | irrat_sqrt : Irrational V17
irrat_sqrt.Gen : V (n : N),
Nat.Prime n - Irrational vtn

1 goal

The only fact that we really use about 17 in proving this is that it is prime.

So, this algorithm examines the statement and its proof, and by checking which
lemmas in the proof are used, generalizes to the theorem:

V primes p, 4/p is irrational.
(Live Demo)

An Algorithm to Generalize Proofs

The algorithm does not derive the more general theorem — that the square root
of a non-perfect square is irrational — when that reasoning step is not evident
in the proof term.

That is, the algorithm generalizes the theorem only as far as the proof allows.

Other Proof Generalizers

A non-comprehensive list of other software to generalize proofs in dependent
type theory:

- (Generalizing proofs in Rocq) Generalization in type theory based
proof assistants by Olivier Pons.

- (Generalizing inductive types in Rocq) Ornaments for Proof Reuse
in Coq by Talia Ringer, Nathaniel Yazdani, John Leo, and Dan
(Grossman.

- (Generalizing typeclasses in Lean 3) Automatically Generalizing
Theorems Using Typeclasses by Alex J. Best.

Our work aims to advance the capabilities of proof generalizers.

An Algorithm to Generalize Proofs:
What’s New?

In particular, we’ve implemented two improvements to state-of-the-art proof
generalization in dependent type theory:

- Generalization of repeated constants

- Generalization of dependent constants

Here are some examples...

Generalizing Repeated Constants

Suppose we prove:

V17 + 17 is irrational.

¥ Tactic state
example:= by

let irrat_sum_sqrt : Irrational (sqrt (17:N)+17) := by 1 goal
irrat_sum_sqrt : Irrational
(V117 + 17)

Generalizing Repeated Constants

Suppose we prove:

V17 + 17 is irrational.

V¥ Tactic state

example:= by
let irrat_sum_sqrt : Irrational (sqrt (17:N)+17) := by 1goal
irrat_sum_sqrt : Irrational
(V117 + 17)

It would be suboptimal to generalize all the 17s in the same way, and yield the
overspecialized proof:

V primes p, /p + p is irrational.

Generalizing Repeated Constants

Suppose we prove:

V17 + 17 is irrational.

¥ Tactic state $o%
example:= by 1 goal
let irrat_sum_sqrt : Irrational (sqrt (17:N)+17) := by
autogeneralize (17:N) in irrat_sum_sqrt irrat_sum_sqrt : Irrational
e (V117 + 17)

irrat_sum_sqrt.Gen : V (n : N),
Nat.Prime n - V (m : N),
Irrational (Vtn + tm)

The algorithm should recognize that the 17s play different roles in the

proof, and should be generalized separately. Indeed, it generalizes to the
theorem:

V primes p and natural numbers n, ,/p 4+ n is irrational.

(Live Demo)

Generalizing Dependent Constants

Suppose we prove:

The uniton of two sets of size 2 has size at most 4.

¥ Tactic state $e3

example := by
1 goal

let union_of_finsets {a : Type} [Fintype al] [DecidableEq o] (A B
(hA : A.card = 2) (hB : B.card = 2) : (A uB).card = 4 := by a union_of_finsets : V {a : Type} [inst : Fintype al] [inst
: DecidableEq a] (A B : Finset a), A.card = 2 - B.card =

2 > (AuB).card = 4

Generalizing Dependent Constants

Suppose we prove:

The uniton of two sets of size 2 has size at most 4.

¥ Tactic state ge3
example := by 1 goal
let union_of_finsets {a : Type} [Fintype a] [DecidableEq o]l (A B

union_of_finsets : V {a : Type} [inst : Fintype a] [inst
(hA : A.card = 2) (hB : B.card = 2) : (A u B).card < 4 := by a

: DecidableEq al (A B : Finset a), A.card = 2 - B.card =

2 > (AuB).card < 4

union_of_finsets.Gen : V (n m : N) {a : Type} [inst :

Fintype al [inst : DecidableEq a] (A B : Finset a),
A.card = n -» B.card =m > (A uB).card = n +m

autogeneralize (2:N) in union_of finsets

The algorithm recognizes that the 4 is actually a 2 4 2, and that the 2s need
not be generalized to the same variable (abilities we’ve added to the algorithm
which weren’t present in the precursor). So it generalizes to the theorem:

The union of sets of size n and m has size at most n + m.

(Live Demo)

Proof

to generalize. ~~

Constant

to generalize
in the proof.

¢ Stage 1)

Abstract all
occurrences of
the constant
in the proof.

- /

If Sllch a constant is fO\l’ﬂd-"

If no such constants are found...

¢ Stage 2)

Abstract all
facts about the
constant

in the proof.

- /

Algorithm Description

¢ Stage 3)

Detect other
constants that
depend on the
abstracted
constant.

- /

l

Generalized

Proof.

¢ Stage 4 D ¢ Stage 5) 4 Stage 6 D
Detect and Extract
unify related | —> m}étg?/(;riables — | Produce the |
occurrences as generalized
of the hypotheses. statement.
constants.

. / \ / \ /

Generalizing Non-Numerical Constants

This tactic also works on longer, non-trivial proofs....

Suppose we prove Bézout's identity in the integers.

For any two integers x and y # 0, there exist integers h and k
such that their greatest common divisor g can be expressed as a
linear combination hx + ky = g.

v Expected type

#check bezout_identity| FV(xyz:7Z),y#0-13hKk,
isGCD (h * x + k *x y) x vy

Generalizing Non-Numerical Constants

When we want to generalize the integers Z, the algorithm recognizes that the
same argument works in (something close to) an arbitrary Euclidean domain.

example := by

autogeneralize Z in bezout_identity

(Live Demo)

Vv Tactic state §e3
1goal
bezout_identity.Gen : V (T : Type) (gen_instOfNat : {n : N} - OfNat T n) (gen_instAddGroup : AddGroup T)
(gen_instMul : Mul T)
(gen_instDvd : Dvd T),
(WV(abc:T),a+b+c=a+(b+c)) -
(V(abc:T),a+(b+c)=>b (a +c¢c)) -
(V(abc:T), (a+b)*xc xC+bxc)-
(V(abc:T), ax*x(b+c) a*xb+axc) -
(V(abc:T), axbxc=ax(bxc)) -
VY (gen_natAbs : T - N),
(V(a:T), @xa=20)-
(V(a:T), 1%a=a)-
(V(a:T), @+a=a)~
(v {a : T}, gen_natAbs a = 0 » a = 0) -
VY (gen_instDiv : Div T) (gen_instMod : Mod T),
(V(ab:T), a/bxb+a%hb=a)-
V (gen_instNegInt : Neg T),
(V(ab:T), —(axb) =-axb) -
(V (a : T) {b : T}, gen_natAbs b # @ - gen_natAbs (a % b) < gen_natAbs b) -
(V(a:T), a+0=a)-
(V(ab:T), bl axb)-
(V(ab:T), (@l b)=3c, b=axc) -~
(V(abc:T), ax(bxc)=>bsx(ax*xc)) ~»
V(ixy:T), y#0->3hk, isGCD (h * x + k x y) x y

N o +

Limitations of Proof Generalization

Proofs with black boxes cannot be directly generalized.

For example...

- Implicit uses of definitional equality, or

- Reliance on computation rules (e.g. reduceMul)

...all create “black boxes” in the proof term, that then make it difficult to
generalize the proof.

An Algorithm to Generalize Proofs

Proof generalization is (of course) done not only by computers. Human
mathematicians generalize proofs so frequently (e.g. when generalizing the proof
of a counterexample) that we rarely think about it explicitly.

Any system that employs human-oriented theorem proving will be a
system that employs proof generalization.

Questions?

	An Algorithm to Generalize Proofs
	An Algorithm to Generalize Proofs
	An Algorithm to Generalize Proofs
	An Algorithm to Generalize Proofs
	An Algorithm to Generalize Proofs
	Other Proof Generalizers
	An Algorithm to Generalize Proofs:  What’s New?
	Generalizing Repeated Constants
	Generalizing Repeated Constants
	Generalizing Repeated Constants
	Generalizing Dependent Constants
	Generalizing Dependent Constants
	Algorithm Description
	Generalizing Non-Numerical Constants
	Generalizing Non-Numerical Constants
	Limitations of Proof Generalization
	An Algorithm to Generalize Proofs
	Questions?

