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A Difficulty in Generalization

Generalization is more difficult when the expression you want to generalize
appears multiple times.
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A Difficulty in Generalization

Generalization is more difficult when the expression you want to generalize
appears multiple times.

So often (but of course not always), the fewer repeated constants, the easier
the generalization.



But ...mathematicians generalize statements
with linked constants all the time.

Looking at a math proof, we don't need to guess which constants are linked.
We know.
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Looking at a math proof, we don't need to guess which constants are linked.
We know.
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Looking at a math proof, we don't need to guess which constants are linked.
We know.
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But ...mathematicians generalize statements
with linked constants all the time.

Looking at a math proof, we don't need to guess which constants are linked.
We know.

Theorem: Consider sets A C R and B C R, where |A| =a.and |B| = 3.
The number of functions f: A — B is 3°
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Looking at a math proof, we don't need to guess which constants are linked.
We know.

Theorem: Consider sets A C R"and B C ]Rr:'where |A| =a.and |B| =b.
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But ...mathematicians generalize statements
with linked constants all the time.

Looking at a math proof, we don't need to guess which constants are linked.
We know from the proof.

Theorem: Consider sets A C R® and B C R?, where |4| = 3and |B| = 3.
The number of functions f : A — B is 33
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But ...mathematicians generalize statements
with linked constants all the time.

A mathematician equipped with the proof would never generalize...

- to something that isn't true (e.g. generalizing all “3"s arbitrarily)...

Theorem: Consider sets A C R and B C R, where |A| =aand |B| =b.
The number of functions f : A — Bism.
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But ...mathematicians generalize statements
with linked constants all the time.

A mathematician equipped with the proof would never generalize...

- to something over-specific (generalizing all “3"s to the same "n")...

Theorem: Considersets A C R and B C R , where |A| = and |B| =n.
The number of functions f: A — B is




But ...mathematicians generalize statements
with linked constants all the time.

But without a proof, we might come up with generalizations that suffer from
these suboptimalities.



But ...mathematicians generalize statements
with linked constants all the time.

How can we mechanize this generalization process, taking advantage of the
proof?
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- (Already done) An approach is suggested by “Generalization in
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...without generalizing to something overly specific?

- (Our proposal) We suggest an approach (the contribution of this
talk), involving unification of metavariables, which builds off the
above approach by Pons.



How can we mechanize this generalization?

...without generalizing to something that isn't true? (problem #1)

- (Already done) An approach is suggested by “Generalization in
type theory based proof assistants” by Olivier Pons.

...without generalizing to something overly specific? (problem #2)

- (Our proposal) We suggest an approach (the contribution of this
talk), involving unification of metavariables, which builds off the
above approach by Pons.

The next part of this talk will delve into specifics of how we solve these two
problems.



Problem #1: How do we avoid generalizing
to something that isn’t true?

The paper (Pons, 2000) proposes an algorithm for risk-free generalization of
proofs.
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t2



Problem #1: How do we avoid generalizing
to something that isn‘t true?

The paper (Pons, 2000) proposes an algorithm for risk-free generalization of
proofs. We implemented it in Lean as a tactic: autogeneralize_basic.

example : True := by
let _sqrt2Irrational : = 3 x : Q, xkx = (2:Z) := by {apg™®
autogeneralize basic (2:7) in  sqrt2Irrational | )
]
]
[ ]
]

= 10O
€ v Y

¥ Tactic state
1 goal

sqrt2Irrational : =3 x, X % x =
t2
sqrt2Irrational.Gen : V¥ (n : 7),
Prime n = =3 x, X % X = 1N

True

¥ Messages (1)

v AutoGeneralizeDemo3000.lean:31:2

_ T € &
Successfully

generalized
_sqrt2lrrational

1o
_sqrt2lirrational.Gen

Dy abstracting Z.



Problem #1: How do we avoid generalizing
to something that isn’t true?

Note, however, that the algorithm does not generate the theorem that the
square root of any non-perfect-square is irrational (which is also true) —
because that is not evident in the proof term.

The algorithm doesn’t determine the most general version of a statement — it
determines the most general version of a statement that the given proof

allows.



Problem #1: How do we avoid generalizing
to something that isn‘t true?

So we start from the proof that 2 has an irrational square root:
_sqrt2Irrational : -3 X, X * X = 12

And generalize to the proof that any prime has an irrational square root:

_sqrt2Irrational.Gen : V (n : Z),
Prime n » =3 X, X % X = tn

Pons's algorithm can be implemented in any type-theory-based theorem
prover (it was initially implemented in Rocqg, and we implemented it in Lean).

How does the algorithm work?



Problem #1: How do we avoid generalizing
to something that isn‘t true?
Suppose we are given ...
- a proof (e.g. that the square root of 2 is irrational).

- an expression to generalize in the proof (e.g. 2).

What do we do?



Problem #1: How do we avoid generalizing
to something that isn‘t true?

1. Look atthe proof.

Why? To check which properties of “2” are actually used in the
proof.



Problem #1: How do we avoid generalizing
to something that isn’t true?

1. Look atthe proof.

=3 x:), x *x=w P =

irrat_def' 2 fun h =»
Exists.casesOn h fun a h =»
Exists.casesOn h fun b h =2
And.casesOn h fum copr h =»
let_fun a_div := let fun c := (Prime.dvd mul Int._prime_two).mp
(dvd_iff_exists_eq mul_right .mpr
(Exists.intro (b * b)

(Eqg.mpr (1d (congrArg (fun _a => a * a = _a) (mul_assoc 2 b b).symm})
(Eq.mpr (id (congrArg (fumn _a => _a =3 * b * b) h}) (Eqg.refl (2 * b * B)ID)))
Or.casesOn (motive = fun t => ¢ = t = 2 | a) ¢ (fum h h_1 => h) (fun h h_1 => h) (Eq.refl c};

let_fun a_is_pk := dvd_iff_exists_eg_mul_right.mp a_div:
Exists.casesOn a_fs_pk fun k hk =>
let_fun h := (Eq.mp (congrArg (fun a => & * a= 32 *b * b) hk} h).symm;
let_funm b_div := let_fun ¢ :=(Prime.dvd_mul Int.prime_two).mp
(dvd_1ff_ex1sts_eq mul_left.mpr
{Exists.intro (k * k)
(Eq.mp (congrArg (fun _a => b * b = _a) (mul_assoc k k 2).symm)
(Eq.mp (congrArg (fum _a => b * b=k * _a) (mul_comm 2 K))
((Int.mul_eq mul_left_1ff (Prime_ne_zero Int.prime_two)).mp
(Eq.mp (congrArg (fun _a => 2 * (b * b) = &) (mul_assoc 2 k (2 * k}))
(Eq.mp (congrArg (fun _a => _a= 2 * K * (2 * K)) (mul_assoc 2 b b)) h)))}3ID}
Or.casesOn (motive := fun t => ¢ =t - 2 | b)Y ¢ (fun h h_1 => h) (fun h h_1l => h) (Eq.rafl c):
tet_fun p dvd ged := (dvd _gecd 117 2 a b) .mpr { left := a _div, right := b_div }.
Prime.not dvd one Int.prime two (Eqg.mp (congrArg (fum a => 2 | a) copr) p dvd ged)



Problem #1: How do we avoid generalizing
to something that isn’t true?

1. Look atthe proof term. It contains many identifiers (lemmas or
inference rules).

=3 x:f), x *x=32 =

irrat_def' 2 fun h =>
Exists.casesOn h fun a h =»
Exists.casesOn h fun b h =2
And.casesOn h fun copr h =»
let_Tun a_div := let fun c := (Frime.dvd mul InT.prime Uwo).mp
(dvd 177 exists eq mul _right .mpr
(Exists.intro (b * b)
(Eqg.mpr {(1d (congrArg (fun _a => a * a = _a) (mul_assoc 2 b b).symm))
(Eq.mpr (id (congrArg (fun _a=> a=3"0b " b) h}) (Eg.refl (2 " b * B}))})}))
Or.casesOn (motive := fun t => ¢ = t = 2 | a) ¢ (fum h h_1 => h) (fun h h_1 =» h) (Eqg.refl c);
let_fun a_is_pk := dvd 1#7 exists eq mil right.mp a_div:
Exists.casesOn a_fis_pk fun k hk =>
let_fun h := (Eq.mp (congrArg (fun _a => & ®* a=32 *b * b) hk} h).symm:
let_fun b_div := let_fun ¢ =(PFrime. dvd sul Int.prime_two).mp
(dvd_ 177 exists eg mul left. mpr
{Exists.intro (k * k)
(Eg.mp (cCongrArg (fun _a => h * b = _a) (Mil_assoC k k 2)_symm)
(Eqg.mp (congrArg (fun _a => b * b =k * _a) (mil comm . k))
((Entomul_eq mul Left 177 (Prime.ne_zero INt.prime_Cwo)).mp
(Eq.mp (congrArg (fun _a => 2 * (b * b) = _a) (mul assoc 2 k (2 * k)))
(Eg.mp (congrArg (fun _a => a=2*Kk"* (2 * K)) (mul_assoc 2 b b)) h)¥)))d})
Or.casesOn (motive := fun t => ¢ =t - 2 | b)Y ¢ (fun h h_1 => h) (fun h h_1l == h) (Eq.rafl c);
let_fun p dvd _gcd := (dvd ged 16T 2 a b) .mpr { left := a div, right := b div }:
Prime . not dvd ong Int.prime two (Eqg.mp (congrArg {(fun _a => 2 | _a} copr) p_dvd_gcd)



Problem #1: How do we avoid generalizing
to something that isn’t true?

1. For each identifier (a lemma or an inference rule) in the proof...

- &« 1 10 Wil “J \r Ny

mp (congrArg (fun a => b °’

g.mp (congrArg (fun _a => |

((Int.mul _eq mul left iff
(Ea.mp (congrArg (fun a



Problem #1: How do we avoid generalizing
to something that isn’t true?

1. For each identifier (a lemma or an inference rule) in the proof...

(id (congrArg (fun _a => a * a =
)r (id (congrArg (fun _a => a =
ve :=funt=>c=1t 421 a)c
: dvd_1ff_exists _eq mul _right.mp
<« nk fun k hk =>



Problem #1: How do we avoid generalizing
to something that isn’t true?
1. For each identifier (a lemma or an inference rule) in the proof...
p (congrArg (fun a => 2 *
.mp (congrArg (fun _a => .

= fun t => c=1t -2 | b)
(dvd gcd 1ff 2 a b).mpr {



Problem #1: How do we avoid generalizing
to something that isn‘t true?

1. For each identifier (a lemma or an inference rule) in the proof,
examine its statement (type).

Prime.dvd mul.{u_ 1} {a : Type u_l} [instt : CommMonoidWithZero al
{p : a) (hp : Prime p) {a b : &}
pla*be.plavplhbd



Problem #1: How do we avoid generalizing
to something that isn‘t true?

1. For each identifier (a lemma or an inference rule) in the proof,
examine its statement.

dvd_1ff_exists_eq mul_right.{u_1} {a Type u_l1
[1nst+t Semigroup a] {a b : aj}
albas3c,b a L



Problem #1: How do we avoid generalizing
to something that isn‘t true?

1. For each identifier (a lemma or inference rule) in the proof,
examine its statement.

Eq.symm. {u} {o sort u} {ab a}Y (h : a'= b)) :



Problem #1: How do we avoid generalizing
to something that isn‘t true?

1. For each identifier (a lemma or inference rule) in the proof,
examine its statement.

Iint.prime two :
Prime 2



Problem #1: How do we avoid generalizing
to something that isn‘t true?

2. Collect all identifiers whose statement contains the expression e to
be generalized.
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Problem #1: How do we avoid generalizing
to something that isn‘t true?

2. Collect all identifiers whose statement contains the expression e to
be generalized.

dhecke, for
u 1 ()_H



Problem #1: How do we avoid generalizing
to something that isn‘t true?

2. Collect all identifiers whose statement (type) contains the
expression e to be generalized.

dhecke, for
u 1 ()_H



Problem #1: How do we avoid generalizing
to something that isn’t true?

3. Replace all instances of e with a metavariable (hole) with the same
type.

r't.fv\ e Wk

)



Problem #1: How do we avoid generalizing
to something that isn’t true?

4. For any identifier whose statement contains e (that is, for any
proposition about e used in the proof)...

r't.f\ ace N

7Y

Int.prime_two : Prime 2




Problem #1: How do we avoid generalizing
to something that isn’t true?

4. For any identifier whose statement contains e (that is, for any
proposition about e used in the proof), replace it with a
metavariable representing the generalized proposition.

I"Lf\ ace N

)

Int.prime_two : Prime 2 ‘gen_prime : Prime /n
'v.“ %ﬁ‘
N I\
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Problem #1: How do we avoid generalizing
to something that isn’t true?

5. Add the metavariables (holes) as local hypotheses.

-3 x:0, x * x =2n :=
irrat_def'?p fun h =>
congrArg (fun a => a * a=17n*Db * b) hk) h)

(Prime.dvd mul 7gen prime).mp

Remember
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Problem #1: How do we avoid generalizing
to something that isn’t true?

5. Add the metavariables (holes) as local hypotheses.

fun n gen prime =>
irrat def' n fun h =>
congrArg (fun _a=> a * a=n%*b>b™*b) hk) h)

(Prime.dvd _mul gen_prime).mp



Problem #1: How do we avoid generalizing
to something that isn‘t true?

5. Add the metavariables (holes) as local hypotheses.

fun n gen_prime =>
irrat def' n fun h =>
congrArg (fun _a=> a * a=n%*b>b™*b) hk) h)

(Prime.dvd_mul gen _prime).mp



Problem #1: How do we avoid generalizing
to something that isn’t true?

5. Add the metavariables (holes) as local hypotheses. (That is, we
abstract the metavariables in the proof term into bound variables.)

fun n gen prime =>
irrat def' n fun h =>
congrArg (fun a=> a* a=n*b*b) hk) h)

(Prime.dvd_mul gen prime).mp



Problem #1: How do we avoid generalizing
to something that isn’t true?

6. Determine the statement of the generalized theorem (In type
theory, this can be done automatically by inferring the type of the
generalized proof.)

Yy Primen - 34 x:0, x * x =n ;=

fun n gen _prime =>
irrat_def' n fun h =>
congrArg (fun _a=> a * a=n%*>b™*Db) hk) h)

(Prime.dvd_mul gen_prime) .mp



Summary: Given ...

- a proof p of theorem t

- an expression e to generalize in t

...the generalization algorithm works as follows:

1.

Look at the proof term p. For each identifier in the proof, examine
its statement.

Collect all identifiers whose statement contains the expression e to
be generalized.

Replace all instances of e in the proof term with a metavariable of
the same type.

For any identifier whose statement contains €, replace it with a
metavariable representing the generalized proposition.

Add the metavariables (holes) as local hypotheses.

Determine the statement of the generalized theorem.



Problem #1: How do we avoid generalizing
to something that isn‘t true?
The idea here is very simple. Given ...
a proof
an expression € to generalize in the proof
...the generalization algorithm works as follows:

if we ever use a fact about e in the proof, then we add any facts we
used about e as hypotheses of the generalized proof. (This lets us
reuse most of the original proof.)



But...sometimes this generalization isn’t
general enough.

This generalization mechanism works fine for this example...

. = I
1 s ¥ Tactic state
R € |
1 goal
=% T . | = - g o 4 1 = . " .I
sqrt2Irrational : Irrational (sqrt 2) := D sart2Irrational : Irrational
B 2)
True



But...sometimes this generalization isn’t
general enough.

This generalization mechanism works fine for this example...

= |
€ | Y

¥ Tactic state

xample : True := by L.

! _sqrt2Irrational : Irrational (sqrt
let _sqrt2Irrational : Irrational (sqrt 2) := § 2)

. _sqrt2Irrational.Gen : V (n : N),
autogeneralize basic 2 in sqrt2lrrational g Nat.Prime n - Irrational (sqrt tn)

o True




But...sometimes this generalization isn’t
general enough.

But when the expression to generalize (e.g. “2") occurs multiple times in the
statement...

te : lrue := by vYTacticstate €€ 1 Y

1 goal
irrat : Irrational ((sqrt (2:N)) + 2) . & sum irrat : Irrational (sart 12 +
=4I - v ;8 faLlidtlida L Sl L 1L T

5 — True

3 I, )



But...sometimes this generalization isn’t

general enough.

But when the expression to generalize (e.g. “2") occurs multiple times in the

statement...this mechanism generalizes each occurrence to the same

variable.
e = A3 ' 0
_y vYTacticstate €6 1
Xamp True := by
1 goal

it i = " Trratin - {e - s Y. -y II ’ )
_sum_irrat : Irrational ((sqrt (2:N)) + 2) := sum_irrat : Irrational (sqrt 12 + 2)
- sum_irrat.Gen : V (n : N), Nat.Prime

ogeneralize basic (2:N) in _sum_irrat . n - Irrational (sqrt tn + n)
[ ]

True

This is saying:
For all primes p, ,/p + p is irrational.



But...sometimes this generalization isn’t

general enough.

But when the expression to generalize (e.g. “2") occurs multiple times in the

statement...this mechanism generalizes each occurrence to the same

variable.
el = A3 ' 0
_y vYTacticstate €6 1
Xamp True := by
1 goal
it i = " Trratin - {e - s Y. -y II ’ )
_sum_irrat : Irrational ((sqrt (2:N)) + 2) := sum_irrat : Irrational (sqrt 12 + 2)
- sum_irrat.Gen : V (n : N), Nat.Prime
generatlise Las {?]T{l"l'_]’7 . n - Irrational (sgrt tn + tn)
] -
True

This is saying:
For all primes p, ,/p + p is irrational.

The above result is technically true, but doesn’t take full advantage of the

proof to determine a more general statement.



But...sometimes this generalization isn’t
general enough.

So we build on Pons’s mechanism (which we've implemented in Lean as
autogeneralize_basic)...

example : True := by ¥ Tactic state = 1O
let _sum_irrat : Irrational ((sqrt (2:N)) + 2) := by 1 goal € 4 Y

_sum_irrat : Irrational
(sqrt t2 + 2)
 True

[ ]




But...sometimes this generalization isn’t
general enough.

So we build on Pons’s mechanism (which we've implemented in Lean as
autogeneralize_basic)...And create a new mechanism to generalize
theorems more robustly (and name it autogeneralize).

example : True :i= by ¥ Tactic state I O
let _sum_irrat : Irrational ((sgrt (2:N)) + 2) := by 1goal € | Y
autogeneralize (2:R) in sum irrat ] _sum_irrat : Irrational

_sum_irrat.Gen : V (n :
W), Nat.Prime n - ¥
(n_1 : N), Irrational
(sqrt tn + tn_1)
 True

This is saying:

For any prime p and natural number n, ,/p 4 n is irrational.



But...sometimes this generalization isn’t
general enough.

So we build on Pons’s mechanism (which we've implemented in Lean as
autogeneralize_basic)...And create a new mechanism to generalize
theorems more robustly (and name it autogeneralize).

[l %)
€ v Y

example : True :i= by ¥ Tactic state

let _sum_irrat : Irrational ((sqrt (2:N)) + 2) := by 1 goal

~sum_irrat : Irrational
(sqrt 12 + 2)
_sum_irrat.Gen : V (n :
W), Nat.Prime n - ¥
(n_1 : N), Irrational
(sqrt tn + tn_1)

 True

We go into details on how this more robust mechanism works in the following
slides.



Problem #2: How do we avoid generalizing
to something overly specific?

We need to disambiguate constants, somehow.
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We need to disambiguate constants, somehow.

Intuitively, to do this, we “check which occurrences of the constant are linked
by the proof”.
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unify in the generalized proof.”



Problem #2: How do we avoid generalizing
to something overly specific?

We need to disambiguate constants, somehow.

More technically, but still somewhat vaguely, we “check which metavariables
unify in the generalized proof.”

Let's go into details in an example.



Problem #2: How do we avoid generalizing
to something overly specific?

First, given a proof term...

Irrational.add_nat 2
(irrat_def 2 fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let_fun a_div := let_fun c :=
(Nat.Prime.dvd_mul Nat.prime_two).mp (dvd_iff_exists_eq_mul_right.mpr

(Exists.intro (b * b)

(Eq.mpr (id (congrArg (fun _a => a * a = _a) (mul_assoc 2 b b).symm))

(Eq.mpr (id (congrArg (fun _a => _a =2 *Db * b) h)) (Eq.refl (2 * b * b))))));



Problem #2: How do we avoid generalizing
to something overly specific?

First, given a proof term, generalize each instance of e to different
metavariables.

Irrational.add_pat 7m.484
(irrat def ?m.@ fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let_fun a_div := let_fun c :=
(Nat.Prime.dvd_mul ?gen_prime).mp (dvd_iff_exists_eq mul_right.mpr
(Exists.intro (b * b)
(Eq.mpr (id (congrArg (fun _a => a * a =_a) (mul_assoc /m.1 b b).symm))
(Eq.mpr (id (congrArg (fun _a => _a ="?m.2 * b * b) h)) (Eq.refl (?m.3 * b * b))))));
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First, given a proof term, generalize each instance of e to different
metavariables.

Irrational.add_pat 7m.484
(irrat def ?m.@ fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let_fun a_div := let_fun c :=
(Nat.Prime.dvd_mul ?gen_prime).mp (dvd_iff_exists_eq mul_right.mpr
(Exists.intro (b * b)
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Intuitively, this means every time we see a "2" in the proof, we abstract it to
different arbitrary number.



Problem #2: How do we avoid generalizing
to something overly specific?

First, given a proof term, generalize each instance of e to different
metavariables.

Irrational.add_pat 7m.484
(irrat def ?m.@ fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let_fun a_div := let_fun c :=
(Nat.Prime.dvd_mul ?gen_prime).mp (dvd_iff_exists_eq mul_right.mpr

(Exists.intro (b * b)

(Eq.mpr (id (congrArg (fun _a => a * a =_a) (mul_assoc /m.1 b b).symm))

(Eq.mpr (id (congrArg (fun _a => _a ="im.2 * b * b) h)) (Eq.refl (’/m.3 * b * b)))))).:

Intuitively, this means every time we see a "2" in the proof, we abstract it to
different arbitrary number. But of course, this gives us a proof that barely
makes sense.



Problem #2: How do we avoid generalizing
to something overly specific?

First, given a proof term, generalize each instance of e to different
metavariables.

YV (x. 8 : N), Prime(x_0),V (X1: N), V (x 2: N),V (x_3: N) ... V (x 484 : N),
Irrational (sqrt x @ + x 484) :=

Irrational.add_pat 7m.484
(irrat def ’m.@ fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let_fun a_div := let_fun c :=
(Nat.Prime.dvd_mul ?gen_prime).mp (dvd_iff_exists_eq mul_right.mpr
(Exists.intro (b * b)
(Eq.mpr (id (congrArg (fun _a

>a*a=_a) (mul_assoc ?m.1 b b).symm))
(Eq.mpr (id (congrArg (fun _a => _a ="#m.2 * b * b) h)) (Eq.refl (/m.3 * b * b)))))):

One way you can see how nonsensical this is: when we add all of these holes
as local hypotheses...we get way too many local hypothesis (more than 484!).



Problem #2: How do we avoid generalizing
to something overly specific?

How to fix it?

YV (x. 8 : N), Prime(x_0),V (X_1: N), V (x 2: N),V (x_3: N) ... V (x 484 : N),
Irrational (sqrt x @ + x 484) :=

Irrational.add_nat ?m.484
(irrat def ’m.@ fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let_fun a_div := let_fun c :=
(Nat.Prime.dvd_mul ?gen_prime).mp (dvd_iff_exists_eq mul_right.mpr
(Exists.intro (b * b)
(Eq.mpr (id (congrArg (fun _a => a * a =_a) (mul_assoc ?m.1 b b).symm))
(Eq.mpr (id (congrArg (fun _a => _a ="#m.2 * b * b) h)) (Eq.refl (/m.3 * b * b)))))):



Problem #2: How do we avoid generalizing
to something overly specific?

Intuitively: we want to make sure whenever we prove something about the
variable under the square root, we use the same variable. And whenever we
prove something about the variable outside the square root, we use a
consistently different variable.

YV (x 8 : N), Prime(x_0),V (X1 N), V (x 2: N),V (x_3: N) ... V (x 484 : N),
Irrational (sqrt x @ + x 484) :=

Irrational.add_pat 7m.484
(irrat def 'm.@ fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let_fun a_div := let_fun c :=
(Nat.Prime.dvd_mul ?gen_prime).mp (dvd_iff_exists_eq mul_right.mpr
(Exists.intro (b * b)
(Eq.mpr (id (congrArg (fun _a => a * a = _a) (mul_assoc ?m.1 b b).symm))
(Eq.mpr (id (congrArg (fun _a => _a ="#m.2 * b * b) h)) (Eq.refl (/m.3 * b * b)))))):



Problem #2: How do we avoid generalizing
to something overly specific?

Concretely — we need to unify metavariables in the proof.

How this can be done in a type-theoretic framework (the hard way):

Recursively visit every function application f(aq,...,a,) inthe
proof term.

We know
- the types of the arguments of f

- the inferred types of the arguments a4, ..., a,

Compare the the types of f's arguments with the type of the a;s,
and set matching metavariables equal to each other.



Problem #2: How do we avoid generalizing
to something overly specific?

Concretely —we need to unify metavariables in the proof.

How this can be done in a type-theoretic framework (the easy way):

In Lean (and possibly other type-theoretic languages), simply
running a type check on the proof term will unify metavariables
that need to be linked.



Problem #2: How do we avoid generalizing
to something overly specific?

Concretely — we need to unify metavariables in the proof.

Irrational.add_nat 7m.1
{irrat def ?m.8 fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let fun a_div := let fun c :=
(Nat.Prime.dvd mul ?gen prime).mp (dvd iff exists egq mul right.mpr
(Exists.intro (b * b)
(Eq.mpr (id (congrArg (fun _a => a * a = a) (mul_assoc m.8 b b).symm))
(Eqg.mpr (id (congrArg (fun a => a = ??m.B * b * b) h)) (Eq.refl (/m.@ * b * b))))));



Problem #2: How do we avoid generalizing
to something overly specific?

Concretely — we need to unify metavariables in the proof. After that, we can
abstract the metavariables as before to get a more general theorem.

Y (x 0 : M), Nat.Prime x 0 . ¥V (x 1: M),
Irrational (sqrt x @ + x 1) :=

Irrational.add nat 7m.1
(irrat_def ?m.8 fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let fun a div := let fun c :=
(Nat.Prime.dvd_mul ?gen_prime).mp (dvd_iff_exists_eq_mul_right.mpr
(Exists.intro (b * b)
(Eq.mpr (id (congrArg (fun _a => a * a = _a) (mul_assoc m.@ b b).symm))
(Eq.mpr (id (congrArg (fun _a => a = ?m.@ * b * b) h)) (Eq.refl (?m.@ * b * b}))))});



Problem #2: How do we avoid generalizing
to something overly specific?

And now we have the result shown previously.

example :

let

_sum_

True

autoc eneralize (2:RM) in

e T e T P i

:= by

irrat : Irrational ((sqrt (2:N)) +

sum 1irrat
o T W

Sata e el

2)

¥ Tactic state i 4 O

1goal € | Y
~sum _irrat : Irrational
(sqrt 12 + 2)

_sum_irrat.Gen : V (n :
W), Nat.Prime n - ¥
(n_1 : N), Irrational
(sqrt tn + tn_1)
 True



Problem #2: How do we avoid generalizing
to something overly specific?

In summary, we make the type checker play the role of the conspiracy
theorist...

V (x0 : N), Prime(x_0),V i(x11: N), V (x 27 N),V (x_3: N).V (x 484 : N),
Irrational (sqrt x O + x 484) :=

Irrational.add_pat 7m.484
(irrat _def ’m.®@ fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let_fun a_div := let_fun c :=
(Nat.Prime.dvd_mul ?gen_prime).mp (dvd_iff_exists_eq mul_right.mpr
(Exists.intro (b * b)
(Eq.mpr (id (congrArg (fun _a => a * a = _a) (mul_assoc ?m.1 b b).symm))
(Eq.mpr (id (congrArg (fun _a => _a ="#m.2 * b * b) h)) (Eq.refl (/m.3 * b * b)))))):
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In summary, we make the type checker play the role of the conspiracy
theorist...




Problem #2: How do we avoid generalizing
to something overly specific?

In summary, we make the type checker play the role of the conspiracy
theorist...

Y (x 0 : M), Nat.Prime x 0 . ¥V (x 1: M),
Irrational (sqrt x @ + x 1) :=

Irrational.add nat 7m.1
(irrat_def ?m.8 fun h =>
Exists.casesOn h fun a h =>
Exists.casesOn h fun b h =>
And.casesOn h fun copr h => let fun a div := let fun c :=
(Nat.Prime.dvd_mul ?gen_prime).mp (dvd_iff_exists_eq_mul_right.mpr
(Exists.intro (b * b)
(Eq.mpr (id (congrArg (fun _a => a * a = _a) (mul_assoc m.@ b b).symm))
(Eq.mpr (id (congrArg (fun _a => a = ?m.@ * b * b) h)) (Eq.refl (?m.@ * b * b})))));



Problem #2: How do we avoid generalizing
to something overly specific?

The overview of how this more robust mechanism works is as follows.



Problem #2: How do we avoid generalizing
to something overly specific?

Given ...
- a proof p of theorem t

- an expression € to generalize in t



Problem #2: How do we avoid generalizing
to something overly specific?

The autogeneralize tactic...
1. For each identifier in the proof p, examines its statement.

2. Collects all identifier statements containing the e to be
generalized.

3. Replaces all instances of e in the proof term with different
metavariables of the same type.

4. Unifies linked metavariables (by recursively unifying at
function applications in the proof term.)

5. For any identifier whose statement contains €, replaces it with a
metavariable representing the generalized proposition.

6. Adds the metavariables (holes) as local hypotheses.

7. Determines the statement of the generalized theorem.



Problem #2: How do we avoid generalizing
to something overly specific?

We can see algorithm in action in the example we mentioned at the
beginning, with counting the number of functions from a set of size 3 to a set
of size 3.
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Problem #2: How do we avoid generalizing
to something overly specific?

We can see this working in the example we mentioned at the beginning, with
counting the number of functions from a set of size 3 to a set of size 3.

Here is the way the basic algorithm (autogeneralize_basic) designed by
Pons would generalize it.

e ! fun_set Fintype.card a = 3
) Fintyj ard B = 3
DY =5 P “]I = =
: . ’ - . : Fintype.card (aa = B) = 3 * 3
fun_set : Fintype.card a = 3 - Fintype.card B = 3 = 2 : .
fun set.Gen : V (n : N),

. Fintype.card a = n =
utogeneralize basic 3 in Tun set . ~
S " Fintype.card B = n -

=

Fintype.card (¢ = B) = n “ n



Problem #2: How do we avoid generalizing
to something overly specific?

We can see this working in the example we mentioned at the beginning, with
counting the number of functions from a set of size 3 to a set of size 3.

And here's how our more robust algorithm (autogeneralize) would
generalize it.

= un_set : Fintype.card a = 3
= Fintype.card B 3
] Sy, P
! l f 1'_J:| ( i i ifl'_-,’[:-l‘.-: 3 ... [ p cal | " rl 3
fun t.Gen : ¥V (n n_1 )
Tun_set ntype.card o n
" ntype.« B n



Problem #2: How do we avoid generalizing
to something overly specific?

We can see this working in the example we mentioned at the beginning, with
counting the number of functions from a set of size 3 to a set of size 3.

And here’s how our more robust algorithm (autogeneralize) would
generalize it.

le = fun_set : Fintype.card a = 3 -
= Fintype.card B
: i . ~l B £ s ard (o o 0 i
run_set : Fintype.card a 3 - Fintype.card B = 3 - intype.card (a 3) 3
fun _set.Gen : ¥ (n n_1 : N),
fun_set Fintype.card a n -
= Fintype.card B nl -
s Fintype.card (a - B) n1l"n

Takeaway: When tactics detect relevant instances of a manipulated
variable through unification, they mimic a more human-oriented style of
mathematics.
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Consider this theorem (originally in the Pons paper).

mult permute : V (nmp : N),
nx (mxxp) =msx (n x p)



A tradeoff between elegance and generality

Consider this theorem (originally in the Pons paper).

mult permute : V (nmp : N),
nx (mxxp) =msx (n x p)

But this theorem holds for more binary operators than just multiplication.



A tradeoff between elegance and generality

mult permute : V (nmp : N),
n* (mxp)=m=x (n * p)

If we generalize all occurrences of multiplication to the same constant, we get
a nice generalization to the fact that this equality holds for any binary operator
that is commutative and associative.

' mult permute : V (nmp : A), n % (m
example := by » £ p) =m * (n * p)
let mult_permute : ¥V (nmp : N), n*x (m % DJ: mult_permute.Gen : V (f : A - N - A,
(V(nmk :N), T(fnm)k=°Tn
autogeneralize basic Mul.mul in mult permute = (fmk)) - (V(hm:N), fanm=fn
s n) =¥Y(nmp:N), fn(fmp) =fm

(f n p)



A tradeoff between elegance and generality

mult_permute : V (nmp : N),
n* (m*xp) =ms=*x(n % p)

If we generalize each of the four occurrences of multiplication separately, we
get a generalization to four different binary operators, and conditions
about joint associativity and commutativity specific to each operator.

a 2 1= Dy i mult_permute : ¥V (nmp : N), n* (m
et mult permute : Y {nmp : N), nx (m %= pj"® kp) =mx* (n % p)
: mult_permute.Gen : V (f f_1 f_2 f_3 :
ralize Mul.mul in mult_permute
. (V(nmk :N), f 2 (f3 nmk-=
. n (filmk)) »
(Y (nm:N), f3nm=7Ff3mn)
. ~-VYi(nmp:N), fn(filmp)=Ffm
_ (f1n p)

This abstraction is more general than Pons's. But probably less elegant.
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But of course, the same generalization behavior that seems undesirable in
this context (putting unnecessary hypotheses on every occurrence of the
generalized x)...
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But of course, the same generalization behavior that seems undesirable in
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generalized x)...

- ...is desirable in the Irrational(v/2 + 2) context (putting
unnecessary hypotheses on every occurrence of the generalized 2).



A tradeoff between elegance and generality

But of course, the same generalization behavior that seems undesirable in
this context (putting unnecessary hypotheses on every occurrence of the
generalized x)...

- ...is desirable in the Irrational(v/2 + 2) context (putting
unnecessary hypotheses on every occurrence of the generalized 2).

- ...and may desirable in the context of vector spaces, where joint
associativity between two operators e.g. a vector-vector operator
and a scalar-vector operator.

Ideally, we want this choice of generalization to be informed by the
context , to strike the right balance between elegance and generality.



Computation rules vs. Deduction rules

We can prove that 2 times 3 is even by using deduction rules saying that 2
times any number is even.

1. o
example := by 1 goal 44 L \f
let two_times_three_is_even : Even (2%3) := Dby 1 ; . . -
0 R S ) ( ] e L two_times_three_is_even : Even
unfold Even; apply Exists.intro 3; rw [two_mull}g (9
- (2 * 3)



Computation rules vs. Deduction rules

We can prove that 2 times 3 is even by using deduction rules saying that 2
times any number is even.

example := by : 1 goal “ Vv ¥
let two_times_three_is_even : Even (2%3) := by 1 o tines three is even : Even
| | i= | = S =5 .
‘ unfold Even; apply Exists.intro 3; rw [two_mulljg (2 % 3)
And we can generalize the "3” in this proof.
example := by ! 1 goal “ v Y
let two_times_three_is_even : Even (2%3) := by I two_times three is even : Even
unfold Even; apply Exists.intro 3; rw [two_mul] (2 % 3)
. two_times three_is even.Gen : Y

sitnnenaeral 17 1 \ time ~ap i =
autogeneralize 3 1n two _1mL51tﬁt§Ex,5?§uen & (n : N), Even (2 % n)
B

B L A T - L A - N



Computation rules vs. Deduction rules

But we can also prove that 2 times 3 is even by computing that 2 times 3
equals 6, and then saying that 6 is even.

axample := by K v Y

1 goal
let two_times _three_is even : Even (2%3) := by i
: . ; - two times three is even : Even
nly [Nat.reduceMull; apply six_is_even - I — NS - '

(2 % 3)



Computation rules vs. Deduction rules

But we can also prove that 2 times 3 is even by computing that 2 times 3
equals 6, and then saying that 6 is even.

example := by ! 1goal € | Y
let two_times three _is even : Even (2%3) := by g : . X
simp only [Nat.reduceMul]l; apply six_is_even . two_times_three_is_even : Even
g1 (2 ¥ 3]
And we can not generalize the “3" in this proof.
. ;
example := by AutoGeneralizeDemo3000.lean:86:2
= : . o
let two_times_three_is_even : Even (2%3) := by : — — 0 €€ A
simp only [Nat.reduceMul]; apply six_is_even yhe Type oF the
. proof doesn't match the

statement. Perhaps a

autogeneralize 3 in two_times_three is_even
Y E i i T R N N i i L T o P e P C'D[Tl'plj t HL 1(_][] rLIlE WHS 1]5[-\{1?
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If some part of the proof is done by computation or evaluation, then in Lean,
the steps used in that part of proof does not show in the proof term.



Computation rules vs. Deduction rules

Why?

If some part of the proof is done by computation or evaluation, then in Lean,
the steps used in that part of proof does not show in the proof term.

This is a downside of a language like Lean (which doesn’t show these
computations in the proof term).

- But, this general issue (i.e. that some theorem-proving tactics are
black boxes) is addressed and tackled in other languages like
Beluga (by Brigitte Pientka).

- So, theorems proved in these languages may be especially
amenable to proof-based generalization.
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Risky generalizers

Proof-based generalizers
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- ...only generalize to true statements.



Comparison to existing generalizers

We find it helpful to divide generalization algorithms into two categories:

- Risky generalizers...
- ...generalize to statements that may or may not be true.
As such, they often rely on conjecture-disprovers to dismiss
incorrect conjectures

- ...for example
- Boyer and Moore’s Generalizer in "A
Computational Logic” (1979).

- Ireland and Bundy’s Generalization Proof Critic in
"Productive Use of Failure” (1996).

- Proof-based generalizers
- ...only generalize to true statements.



Comparison to existing generalizers

We find it helpful to divide generalization algorithms into two categories:

- Risky generalizers...
- ...generalize to statements that may or may not be true.
As such, they often rely on conjecture-disprovers to dismiss
incorrect conjectures

- Proof-based generalizers
- ...only generalize to true statements.

- for example
- Best's Typeclass Generalizer in “Automatically
Generalizing Theorems Using Typeclasses” (2021).

- Pons's Generalizer in "Generalization in type theory
based proof assistants” (2000).

- QOur autogeneralize tactic.
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Y (n : N), Nat.Prime n -
YV (n.1 : N),
Irrational (sgqrt tn + tn_1)
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When should we use proof-based
generalization?

The most obvious use case is proof reuse.

YV (n : N), Nat.Prime n -
YV (n.1 : N),
Irrational (sqrt tn + tn_1)

esali2e / \Ilr\s*m*“ﬁ C
A gV - 3
3 cousS e

Irrational (sqrt t2 + 2) Irrational (sqrt 3 + 6)



When should we use proof-based
generalization?

In action:

example : Irrational (sqrt 3 + 6) := by sum_irrat : Irrational (sgrt 12 + 2)
t sum irrat * Irrational {F,qr‘; (2:/) + 2) ;:. sum_irrat.Gen : V (n : M), Nat.Prime

gutogenera _{E-r} il

R N Y N T T 7 CAE N

sum_1irrat s n-Y (n_1: N), Irrational (sqrt tn
tn 1)

Irrational (sqrt 3 + 6)




When should we use proof-based
generalization?

In action:

ample : Irrational (sqrt 3 + 6) := by sum_irrat : Irrational (sgrt t2 + 2)
sum_irrat : Irrational (sqrt (2:N) + 2) %" sum_irrat.Gen : Irrational (sqrt 13
- [ | "
jutogeneralize (2:N) in sum_irrat " + 16)

specialize sum_irrat.Gen 3 (Nat.prime_three) 6 — Irrational (sqrt 3 + 6)



When should we use proof-based
generalization?

In action:

- example : Irrational (sqrt 3 + 6) := by o geals
let sum_irrat : Irrational (sqrt (2:N) + 2)
autogeneralize (2:M) in sum irrat
P A T W N e

specialize sum_irrat.Gen 3 (Nat.prime_three) &
assumption .

> All Messages (93)

i




When should we use proof-based
generalization?

But in developing this tactic, we had a very specific use case in mind...



When should we use proof-based
generalization?

But in developing this tactic, we had a very specific use case in mind...
learning from failure.



When should we use proof-based
generalization?

By “failure” to prove a conjecture C, we mean:

- Not that the “failure” is an invalid proof of C, and the “learning” is a
patch.

- Rather, that the "failure” is a valid proof of the negation —=C' (e.g. a

counterexample to ('), and the “learning” is a generalization of that
proof that helps decrease the size of the proof search space.

Here's an example...



When should we use proof-based
generalization?

Suppose we want to answer: Which polynomials with real coefficients have a
real root?

We might notice that all degree-1 polynomials have a real root, and
generate the following conjecture...



When should we use proof-based
generalization?

Which polynomials with real coefficients have a real root? We might...

Generate a conjecture: Every polynomial with real coefficients
has a real root.

Fail: The polynomial 2 4+ 1 has no real root.

Generalize (learn from) the failure : Any polynomial of the form

x" + d, where n is even and d > 0 has no real root, by the
autogeneralized proof.

Apply what you learned: It's not straightforward to see whether
an even-degree polynomial has a real root. We may want to turn
our attention to polynomials of odd-degree.



Polynomials with Real Coefficients and Real
Roots
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When should we use proof-based
generalization?

We found even-degree polynomials with no real root... is it possible that we
could find a degree 3 polynomial with no real root?

- Generate a conjecture: There exists a cubic with no real root.

- Fail: Every cubic polynomial has a real root. (Proof: The cubic term

dominates when z < —1 and dominates when 1 <« z, and
switches sign between these two cases. So, by intermediate value
theorem, the polynomial must have a real root).

- Generalize (learn from) the failure : Any odd-degree polynomial
has a real root, by the autogeneralized proof.

- Apply what you learned: We can now drastically cut down on our
search space — we can safely restrict our attention to characterizing
which even-degree polynomials have a real root.



Polynomials with Real Coefficients and Real
Roots




Polynomials with Real Coefficients and Real
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When should we use proof-based
generalization?

In general, the process is:
- Generate a conjecture.
- Fail.
- Generalize (learn from) the failure.

- Apply what you learned (for example, conjecturing the converse
e.g. "no even-degree polynomial has a real root”)
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In general, the process is:
- Generate a conjecture.
- Fail.
- Generalize (learn from) the failure.

- Apply what you learned.



When should we use proof-based
generalization?

In general, the process is:

Generate a conjecture.

Fail.
Generalize the failure often means autogeneralize.

Apply what you learned.

In math, often “generalization” of failure is simply a “proof-based
generalization” of failure, as above. A mathematician will trace back through
the proof, and notice the “same proof” holds for a much wider set of objects
than the proof was applied for.

But maybe not everybody uses this exact proof-based generalization process
to characterize polynomials with real roots...



Given 2n points on a plane, does there always exist a line such that n points
are strictly on one side of the line, and n strictly on the other?

The typical problem-solving process is:

- Generate a conjecture: A moving line will pass through one point

at a time. So, any appropriately translated line will bisect the set.

Let's conjecture that there always exists a horizontal line which
does.



Given 2n points on a plane, does there always exist a line such that n points
are strictly on one side of the line, and n strictly on the other?

- Fail: If the point set contains two points collinear through a
horizontal line, the strategy fails (and there might not exist a
horizontal line which bisects the set).

@



Given 2n points on a plane, does there always exist a line such that n points
are strictly on one side of the line, and n strictly on the other?

- Generalize (learn from) the failure : If the point set contains two

points collinear through any line of gradient m, the strategy fails

(i.e. there might not exist a line of gradient m which bisects the
set).



Given 2n points on a plane, does there always exist a line such that n points
are strictly on one side of the line, and n strictly on the other?

- Apply what you learned: Now, the strongest possible statement
we could prove is the following strengthening of the inverse: If a
point set contains no two points collinear through a line with

gradient m, there does exist a line with gradient m to bisect it.
c s - 9
Once proved, we can finish the proof by noticing at most ( 2”) such

"forbidden” gradients exist, and any line with a non-forbidden
gradient will work.
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Given 2n points on a plane, does there always exist a line such that n points
are strictly on one side of the line, and n strictly on the other?

- Apply what you learned: Now, the strongest possible statement
we could prove is the following strengthening of the inverse: If a
point set contains no two points collinear through a line with

gradient m, there does exist a line with gradient m to bisect it.
c s - 9
Once proved, we can finish the proof by noticing at most ( 2”) such

"forbidden” gradients exist, and any line with a non-forbidden
gradient will work.



The fact that so many people solve this problem in nearly the same way
suggests there is something quite natural about failure and proof-based
generalization of the failure.



When should we use proof-based
generalization?

Proof-based generalization is also regularly used in research mathematics to
refine conjectures.

Tim Gowers & Ryan Alweiss are currently working on an open problem — a
particular strengthening of the cap-set conjecture. And they came up with the
formulation of the problem using (instinctive) proof-based generalization.

The problem statement is:

- For any particular density § > 0, we can always find a dimension n
big enough so that any subset of vector space F3* with at least
density d will contain a three-term arithmetic progression

{z, z + d, z + 2d} such that the difference vectord = e; + ¢e; + e
is a sum of 3 standard basis vectors.

How was this conjecture generated? Why the choice of 3 basis vectors?



When should we use proof-based
generalization?

They started with the cap-set problem:

- For any particular density > 0, we can always find a dimension n

big enough so that any subset of F3" with density at least d will
contain a 3-term AP.

Then they did the following:

- Generate a conjecture: (Strengthening the above) It's possible to
create such a three-term AP where the difference d = e; between

points is given by 1 standard basis vector e;.



Then:

When should we use proof-based
generalization?

Fail: For density d = 1/3, there is no vector space F3* where every

1/3-dense subset contains such a 3-term AP. In particular, the 1/3-
dense subset made of the vectors whose components add to

0 mod 3 will contain no 3-term AP where the difference d = ¢;
between points given by 1 standard basis vector.



When should we use proof-based
generalization?

Then:

- Generalize (learn from) the failure : The same 1/3-dense subset
contains no 3-term AP when the difference d between points is
given by k # 0 mod 3 standard basis vectors.



When should we use proof-based
generalization?

Then:

- Apply what you learned: They generated a new conjecture: A §-
dense subset contains a three-term AP where the difference

e; + e; + e; between points is given by 3 standard basis vectors.



When should we use proof-based
generalization?

Then:

- Apply what you learned: They generated a new conjecture: A §-
dense subset contains a three-term AP where the difference

e; + e; + e; between points is given by 3 standard basis vectors.

Note that after learning from failure, mathematicians quite often conjecture
the strongest thing left that could be true.



Possible expressions for the difference d




Possible expressions for the difference d




When should we use proof-based
generalization?

This autogeneralization process to find the refined cap-set conjecture was not
done explicitly, but instinctively.

This account is a best-guess reconstruction of what was going on (fleetingly)
in these mathematicians’ minds.



When should we use proof-based
generalization?

And so we end up, via (human-implemented) proof-based generalization, at a
mathematical research conjecture:

For any particular density 6 > 0, we can always find a dimension n big enough
so that any d-dense subset of F3' will contain a line such that the difference

vector d = e; + e; + e between points is made of the sum of 3 standard basis
vectors.



When should we use proof-based
generalization?

These autogeneralizations typically are performed by mathematicians
subconsciously, without awareness of any algorithm or heuristic.

Proof-based generalization just happens while mathematicians do math.

So there seems to be something natural about proof-based generalization,

and if we want to create a human-style theorem prover, we will likely need to
incorporate it.



Conclusion

We've designed and implemented an algorithm to improve robustness of
proof-based generalization....

)= S I B

example : True := by ¥ Tactic state
let _sum_irrat : Irrational ((sqrt (2:N)) + 2) := by 1goal € | Y

_sum_irrat : Irrational
(sqrt 12 + 2)
_sum_irrat.Gen : V (n :
M), Nat.Prime n - V
(n_1 : N), Irrational
(sqrt tn + tn_1)

= True

... which has potential in enabling automated theorem provers to better
learn from failure when finding proofs in a human-like way.



